Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10624
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDilmen, Erdem-
dc.contributor.authorBeyhan, Selami-
dc.date.accessioned2019-08-16T13:31:58Z
dc.date.available2019-08-16T13:31:58Z
dc.date.issued2018-
dc.identifier.isbn9781538676417-
dc.identifier.urihttps://hdl.handle.net/11499/10624-
dc.identifier.urihttps://doi.org/10.1109/CEIT.2018.8751922-
dc.description.abstractThe function approximation capability of a regressor model in generalized predictive control (GPC) directly affects the tracking performance of unknown nonlinear systems. In this paper, a novel deep recurrent support vector regressor (DRSVR) is proposed as a function approximator to be adopted in the GPC scheme. This study is an extension of the authors' work [1] to the control task. The DRSVR model has a recurrent state-space structure based on the least-squares support vector regressor (LS-SVR), infinite-impulse response filter (IIR) and adaptive kernel function. The model parameters, including the Gaussian kernel width parameter ?, are updated simultaneously, providing the model to capture the time-varying system dynamics quickly. Parameters are tuned online using error-square minimization via conventional Gauss-Newton optimization while keeping the poles of the IIR filter constrained in the unit circle to maintain stability. The proposed DRSVR based GPC is applied to control nonlinear HIV dynamics. The numerical applications indicate that the proposed regressor model provides high closed loop identification performance in the GPC scheme. Hence, it provides the controller with a significant tracking capability. © 2018 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAdaptive kernel functionen_US
dc.subjectDeep SVMen_US
dc.subjectGPCen_US
dc.subjectHIV infection stabilizationen_US
dc.subjectRecurrent SVMen_US
dc.subjectStabilityen_US
dc.subjectConstrained optimizationen_US
dc.subjectConvergence of numerical methodsen_US
dc.subjectIIR filtersen_US
dc.subjectImpulse responseen_US
dc.subjectModel predictive controlen_US
dc.subjectStabilizationen_US
dc.subjectSupport vector machinesen_US
dc.subjectTime varying systemsen_US
dc.subjectVector spacesen_US
dc.subjectAdaptive kernel functionsen_US
dc.subjectClosed loop identificationen_US
dc.subjectGauss-Newton optimizationen_US
dc.subjectGeneralized predictive controlen_US
dc.subjectHIV infectionen_US
dc.subjectUnknown nonlinear systemsen_US
dc.subjectPredictive control systemsen_US
dc.titleStabilization of HIV infection using deep recurrent SVM based generalized predictive controlen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/CEIT.2018.8751922-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85069220560en_US
dc.identifier.wosWOS:000491282100177en_US
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeConference Object-
crisitem.author.dept20.04. Mechatronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

32
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.