Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/10725
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDilmen, Erdem-
dc.contributor.authorBeyhan, Selami-
dc.date.accessioned2019-08-16T13:32:36Z
dc.date.available2019-08-16T13:32:36Z
dc.date.issued2018-
dc.identifier.issn1432-7643-
dc.identifier.urihttps://hdl.handle.net/11499/10725-
dc.identifier.urihttps://doi.org/10.1007/s00500-017-2713-5-
dc.description.abstractIn this paper, two novel approaches are proposed to improve the performance of online least squares support vector machine for classification problem. First, the parameters of support vector classifier model including kernel width parameter are simultaneously updated when a new sample arrives. In that model, kernel width parameter is a nonlinear term which cannot be estimated via least squares solution. Therefore, unscented Kalman filter is adopted to train all the parameters where Karush–Kuhn–Tucker conditions are satisfied. Second, a variable-size moving window, which is updated by an intelligent strategy, is proposed to construct the support vector set. Thus, the proposed model captures the dynamics of data quickly while precluding itself to become clumsy due to big amount of useless data. In addition, adaptive support vector set provides a lower computational load especially for the large data sets. Simultaneous training of the model parameters by unscented Kalman filter and intelligent update of support vector set provides a superior classification performance compared to the online support vector classification approaches in the literature. © 2017, Springer-Verlag GmbH Germany.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.relation.ispartofSoft Computingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBenchmark dataen_US
dc.subjectOnline SVCen_US
dc.subjectSVMen_US
dc.subjectUKFen_US
dc.subjectVariable-size moving windowen_US
dc.subjectImage retrievalen_US
dc.subjectSupport vector machinesen_US
dc.subjectVectorsen_US
dc.subjectClassification performanceen_US
dc.subjectLeast squares solutionsen_US
dc.subjectMoving windowen_US
dc.subjectOnline least squares support vector machinesen_US
dc.subjectSupport vector classifiersen_US
dc.subjectUnscented Kalman Filteren_US
dc.subjectKalman filtersen_US
dc.titleAn enhanced online LS-SVM approach for classification problemsen_US
dc.typeArticleen_US
dc.identifier.volume22en_US
dc.identifier.issue13en_US
dc.identifier.startpage4457
dc.identifier.startpage4457en_US
dc.identifier.endpage4475en_US
dc.identifier.doi10.1007/s00500-017-2713-5-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85026916758en_US
dc.identifier.wosWOS:000435408200025en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept20.04. Mechatronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

9
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

7
checked on Nov 21, 2024

Page view(s)

58
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.