Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/22117
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzan, Cenk-
dc.contributor.authorCeylan, Halim-
dc.contributor.authorHaldenbilen, Soner-
dc.date.accessioned2019-08-20T06:38:57Z
dc.date.available2019-08-20T06:38:57Z
dc.date.issued2014-
dc.identifier.issn1877-0428-
dc.identifier.urihttps://hdl.handle.net/11499/22117-
dc.identifier.urihttps://doi.org/10.1016/j.sbspro.2014.01.036-
dc.description.abstractThis study aims to solve dynamic user Equilibrium Network Design Problem (ENDP) with dynamic network loading profiles using modified Reinforcement Learning (RL) approach. The hi-level programming technique is used to solve the problem. At the lower level of the problem, the dynamic User Equilibrium (UE) link flows are obtained by simulation based Dynamic Traffic Assignment (DTA) model with DynusT and signal timings are obtained at the upper level by modified RL method. The system Performance Index (PI) is defined as the sum of a weighted linear combination of delay and number of stops per unit time for all traffic streams, which is evaluated by the traffic model of TRANSYT-7F. Q-learning, a model-free approach, is one of the RL methods. The modified RE method is actually based on Q-learning. By integrating the modified RL method, traffic assignment and traffic control, the modified REinforcement Learning TRANSYT-7F DynusT (RELTRAD) model is proposed to solve the dynamic ENDP. The objective function of the proposed RELTRAD is total network PI. The model is tested on the medium sized Allsop and Charlesworth's network. Two scenarios, related to various dynamic network loading profiles. are proposed for numerical application. Encouraging results are obtained. Results showed that the RELTRAD model effectively optimizes the signal timings and values of the network PI. The RELTRAD model improves to the network PI from the initial value to the final value as 65% and 67% for loading profile 1 and 2, respectively. (C) 2013 The Authors. Published by Elsevier Ltd.en_US
dc.language.isoenen_US
dc.publisherELSEVIER SCIENCE BVen_US
dc.relation.ispartofTRANSPORTATION: CAN WE DO MORE WITH LESS RESOURCES? - 16TH MEETING OFen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNetwork design problem; reinforcement learning method; dynamic networken_US
dc.subjectloading; DynusT; TRANSYT-7Fen_US
dc.titleSolving network design problem with dynamic network loading profiles using modified Reinforcement Learning Methoden_US
dc.typeConference Objecten_US
dc.identifier.volume111en_US
dc.identifier.startpage38
dc.identifier.startpage38en_US
dc.identifier.endpage47en_US
dc.authorid0000-0003-0690-6033-
dc.authorid0000-0002-4616-5439-
dc.authorid0000-0002-6548-6481-
dc.identifier.doi10.1016/j.sbspro.2014.01.036-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.wosWOS:000335582500004en_US
dc.identifier.scopusquality--
dc.ownerPamukkale University-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.cerifentitytypePublications-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
crisitem.author.dept10.02. Civil Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S1877042814000378-main.pdf593.04 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Mar 6, 2025

Page view(s)

50
checked on Mar 4, 2025

Download(s)

20
checked on Mar 4, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.