Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/23655
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGürel, Eşref-
dc.contributor.authorAşçı, Mustafa-
dc.date.accessioned2019-08-20T06:55:30Z-
dc.date.available2019-08-20T06:55:30Z-
dc.date.issued2017-
dc.identifier.issn0381-7032-
dc.identifier.urihttps://hdl.handle.net/11499/23655-
dc.description.abstractIn this paper we define and study the k-order Gaussian Fibonacci and Lucas Numbers with boundary conditions. We identify and prove the generating functions, the Binet formulas, the summation formulas, matrix representation of k-order Gausian Fibonacci numbers and some significant relationships between k-order Gaussian Fibonacci and k-order Lucas numbers connecting with usual k-order Fibonacci numbers.en_US
dc.language.isoenen_US
dc.publisherCHARLES BABBAGE RES CTRen_US
dc.relation.ispartofARS COMBINATORIAen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFibonacci numbers; Gaussian Fibonacci numbers; k-order Gaussianen_US
dc.subjectFibonacci Numbers; k-order Gaussian Lucas Numbersen_US
dc.titleSOME PROPERTIES OF k-ORDER GAUSSIAN FIBONACCI AND LUCAS NUMBERSen_US
dc.typeArticleen_US
dc.identifier.volume135en_US
dc.identifier.startpage345-
dc.identifier.startpage345en_US
dc.identifier.endpage356en_US
dc.authorid0000-0003-3355-0909-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.wosWOS:000412034500029en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Nov 22, 2024

Page view(s)

46
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.