Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/23655
Title: SOME PROPERTIES OF k-ORDER GAUSSIAN FIBONACCI AND LUCAS NUMBERS
Authors: Gürel, Eşref
Aşçı, Mustafa
Keywords: Fibonacci numbers; Gaussian Fibonacci numbers; k-order Gaussian
Fibonacci Numbers; k-order Gaussian Lucas Numbers
Publisher: CHARLES BABBAGE RES CTR
Abstract: In this paper we define and study the k-order Gaussian Fibonacci and Lucas Numbers with boundary conditions. We identify and prove the generating functions, the Binet formulas, the summation formulas, matrix representation of k-order Gausian Fibonacci numbers and some significant relationships between k-order Gaussian Fibonacci and k-order Lucas numbers connecting with usual k-order Fibonacci numbers.
URI: https://hdl.handle.net/11499/23655
ISSN: 0381-7032
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

WEB OF SCIENCETM
Citations

2
checked on Nov 25, 2024

Page view(s)

46
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.