Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/26139
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Halıcı, Serpil | - |
dc.contributor.author | Öz, Sinan | - |
dc.contributor.editor | Serpil Halıcı | - |
dc.date.accessioned | 2019-09-20T05:56:54Z | |
dc.date.available | 2019-09-20T05:56:54Z | |
dc.date.issued | 2018 | - |
dc.identifier.citation | Halici, S., & Öz, S. (2018). On Gaussian Pell polynomials and their some properties. Palestine Journal of Mathematics, 7(1), 251-256. | en_US |
dc.identifier.uri | https://hdl.handle.net/11499/26139 | - |
dc.description.abstract | In this study, we dene rstly Gaussian Pell polynomials. Then, we give the generating functions and Binet formulas for this type polynomials. We also obtain some important identities involving the Gaussian Pell polynomials. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Palestine Journal of Mathematics, 7(1), 251-256. | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Recurrence Relations, Fibonacci and Pell Numbers, Generating Function | en_US |
dc.title | On Gaussian Pell polynomials and their some properties. | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 7 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 251 | en_US |
dc.identifier.endpage | 256 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.owner | Pamukkale University | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 17.04. Mathematics | - |
Appears in Collections: | Fen-Edebiyat Fakültesi Koleksiyonu |
CORE Recommender
Sorry the service is unavailable at the moment. Please try again later.
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.