Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/26154
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Halıcı, Serpil | - |
dc.contributor.author | Karataş, Adnan | - |
dc.date.accessioned | 2019-09-20T06:18:56Z | |
dc.date.available | 2019-09-20T06:18:56Z | |
dc.date.issued | 2017 | - |
dc.identifier.uri | https://hdl.handle.net/11499/26154 | - |
dc.description.abstract | Since O is a non-associative algebra over R, this real division algebra can not be algebraically isomorphic to any matrix algebras over the real number eld R. In this study using H with Cayley-Dickson process we obtain octonion algebra. Firstly, We investigate octonion algebra over Zp. Then, we use the left and right matrix representations of H to construct representation for octonion algebra. Furthermore, we get the matrix representations of O/Zp with the help of Cayley-Dickson process. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Palestine Journal of Mathematics | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Quaternion algebra, Octonion algebra, Cayley-Dickson process, Matrix representation. | en_US |
dc.title | O/Z p octonion algebra and its matrix representations | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 6 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 307 | en_US |
dc.identifier.endpage | 313 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.owner | Pamukkale University | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.dept | 17.04. Mathematics | - |
crisitem.author.dept | 17.04. Mathematics | - |
Appears in Collections: | Fen-Edebiyat Fakültesi Koleksiyonu |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.