Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/28428
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kıraç, Alp Arslan | - |
dc.date.accessioned | 2020-01-07T10:50:56Z | |
dc.date.available | 2020-01-07T10:50:56Z | |
dc.date.issued | 2017-07-31 | - |
dc.identifier.uri | https://hdl.handle.net/11499/28428 | - |
dc.description.abstract | We obtain the classical Ambarzumyan's theorem for the Sturm-Liouville operator L with real-valued potential q ? L1[0, 1] and periodic boundary conditions when the subset of the spectrum of L and Fourier coecients ck of the potential q such that the condition holds are given. The same result holds for the anti-periodic boundary conditions. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Asian Journal of Mathematics and Computer Research | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Ambarzumyan theorem, inverse spectral theory, Hill operator, eigenvalue asymptotics | en_US |
dc.title | An inverse result for the periodic boundary conditions | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 19 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 42 | en_US |
dc.identifier.endpage | 49 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.owner | Pamukkale University | - |
item.languageiso639-1 | en | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | open | - |
crisitem.author.dept | 17.04. Mathematics | - |
Appears in Collections: | Fen-Edebiyat Fakültesi Koleksiyonu |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
AN INVERSE RESULT FOR THE PERIODIC BOUNDARY CONDITIONS.docx | 13.01 kB | Microsoft Word XML | View/Open |
CORE Recommender
Page view(s)
18
checked on Aug 24, 2024
Download(s)
6
checked on Aug 24, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.