Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/30104
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAtilgan, E.-
dc.contributor.authorSenol, M.-
dc.contributor.authorKurt, Ali-
dc.contributor.authorTasbozan, O.-
dc.date.accessioned2020-06-08T12:11:13Z
dc.date.available2020-06-08T12:11:13Z
dc.date.issued2019-
dc.identifier.issn0890-5487-
dc.identifier.urihttps://hdl.handle.net/11499/30104-
dc.identifier.urihttps://doi.org/10.1007/s13344-019-0045-1-
dc.description.abstractThe main purpose of this paper is to obtain the wave solutions of conformable time fractional Boussinesq–Whitham–Broer–Kaup equation arising as a model of shallow water waves. For this aim, the authors employed auxiliary equation method which is based on a nonlinear ordinary differential equation. By using conformable wave transform and chain rule, a nonlinear fractional partial differential equation is converted to a nonlinear ordinary differential equation. This is a significant impact because neither Caputo definition nor Riemann–Liouville definition satisfies the chain rule. While the exact solutions of the fractional partial derivatives cannot be obtained due to the existing drawbacks of Caputo or Riemann–Liouville definitions, the reliable solutions can be achieved for the equations defined by conformable fractional derivatives. © 2019, Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectauxiliary equation methoden_US
dc.subjectconformable fractional derivativeen_US
dc.subjecttime fractional coupled Boussinesq–Whitham–Broer–Kaup equationen_US
dc.subjectCoastal engineeringen_US
dc.subjectMathematical transformationsen_US
dc.subjectNonlinear equationsen_US
dc.subjectOrdinary differential equationsen_US
dc.subjectAuxiliary equation methoden_US
dc.subjectBoussinesqen_US
dc.subjectCaputo definitionsen_US
dc.subjectFractional derivativesen_US
dc.subjectFractional partial differential equationsen_US
dc.subjectNonlinear ordinary differential equationen_US
dc.subjectPartial derivativesen_US
dc.subjectShallow water wavesen_US
dc.subjectWater wavesen_US
dc.titleNew wave solutions of time-fractional coupled boussinesq–whitham–broer–kaup equation as a model of water wavesen_US
dc.typeArticleen_US
dc.identifier.volume33en_US
dc.identifier.issue4en_US
dc.identifier.startpage477
dc.identifier.startpage477en_US
dc.identifier.endpage483en_US
dc.authorid0000-0002-0617-6037-
dc.identifier.doi10.1007/s13344-019-0045-1-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85068779403en_US
dc.identifier.wosWOS:000475692400009en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

27
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

28
checked on Nov 21, 2024

Page view(s)

32
checked on Aug 24, 2024

Download(s)

70
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.