Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/30104
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Atilgan, E. | - |
dc.contributor.author | Senol, M. | - |
dc.contributor.author | Kurt, Ali | - |
dc.contributor.author | Tasbozan, O. | - |
dc.date.accessioned | 2020-06-08T12:11:13Z | |
dc.date.available | 2020-06-08T12:11:13Z | |
dc.date.issued | 2019 | - |
dc.identifier.issn | 0890-5487 | - |
dc.identifier.uri | https://hdl.handle.net/11499/30104 | - |
dc.identifier.uri | https://doi.org/10.1007/s13344-019-0045-1 | - |
dc.description.abstract | The main purpose of this paper is to obtain the wave solutions of conformable time fractional Boussinesq–Whitham–Broer–Kaup equation arising as a model of shallow water waves. For this aim, the authors employed auxiliary equation method which is based on a nonlinear ordinary differential equation. By using conformable wave transform and chain rule, a nonlinear fractional partial differential equation is converted to a nonlinear ordinary differential equation. This is a significant impact because neither Caputo definition nor Riemann–Liouville definition satisfies the chain rule. While the exact solutions of the fractional partial derivatives cannot be obtained due to the existing drawbacks of Caputo or Riemann–Liouville definitions, the reliable solutions can be achieved for the equations defined by conformable fractional derivatives. © 2019, Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Verlag | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | auxiliary equation method | en_US |
dc.subject | conformable fractional derivative | en_US |
dc.subject | time fractional coupled Boussinesq–Whitham–Broer–Kaup equation | en_US |
dc.subject | Coastal engineering | en_US |
dc.subject | Mathematical transformations | en_US |
dc.subject | Nonlinear equations | en_US |
dc.subject | Ordinary differential equations | en_US |
dc.subject | Auxiliary equation method | en_US |
dc.subject | Boussinesq | en_US |
dc.subject | Caputo definitions | en_US |
dc.subject | Fractional derivatives | en_US |
dc.subject | Fractional partial differential equations | en_US |
dc.subject | Nonlinear ordinary differential equation | en_US |
dc.subject | Partial derivatives | en_US |
dc.subject | Shallow water waves | en_US |
dc.subject | Water waves | en_US |
dc.title | New wave solutions of time-fractional coupled boussinesq–whitham–broer–kaup equation as a model of water waves | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 33 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 477 | |
dc.identifier.startpage | 477 | en_US |
dc.identifier.endpage | 483 | en_US |
dc.authorid | 0000-0002-0617-6037 | - |
dc.identifier.doi | 10.1007/s13344-019-0045-1 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85068779403 | en_US |
dc.identifier.wos | WOS:000475692400009 | en_US |
dc.identifier.scopusquality | Q2 | - |
dc.owner | Pamukkale University | - |
item.fulltext | With Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.languageiso639-1 | en | - |
item.grantfulltext | open | - |
item.openairetype | Article | - |
crisitem.author.dept | 17.04. Mathematics | - |
Appears in Collections: | Fen-Edebiyat Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
New+Wave+Solutions+of+Time-Fractional+Coupled+Boussinesq–Whitham–+Broer–Kaup+Equation+as+A+Model+of+Water+Waves.pdf | 1.3 MB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
27
checked on Oct 13, 2024
WEB OF SCIENCETM
Citations
28
checked on Nov 21, 2024
Page view(s)
32
checked on Aug 24, 2024
Download(s)
70
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.