Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/37143
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAydın, Mustafa-
dc.contributor.authorUslu, S.-
dc.contributor.authorBahattin Çelik, M.-
dc.date.accessioned2021-02-02T09:24:11Z
dc.date.available2021-02-02T09:24:11Z
dc.date.issued2020-
dc.identifier.issn0016-2361-
dc.identifier.urihttps://hdl.handle.net/11499/37143-
dc.identifier.urihttps://doi.org/10.1016/j.fuel.2020.117472-
dc.description.abstractIn the present study, the performance and emission parameters of a single cylinder diesel engine powered by biodiesel-diesel fuel blends were predicted by Artificial Neural Network (ANN) and optimized by Response Surface Methodology (RSM). The data to be used for ANN and RSM applications were obtained by using biodiesel/diesel fuel blends at different engine loads and various injection pressures. ANN model has been developed to predict the outputs such as brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), exhaust gas temperature (EGT), nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO) and smoke regarding engine load, biodiesel ratio and injection pressure. A feed-forward multi-layer perceptron network is used to show the correlation among the input factors and the output factors. The RSM is applied to find the optimum engine operating parameters with the purpose of simultaneous reduction of emissions, EGT, BSFC and increase BTE. The obtained results reveal that the ANN can correctly model the exhaust emission and performance parameters with the regression coefficients (R2) between 0.8663 and 0.9858. It is seen that the maximum mean relative error (MRE) is less than 10%, compared with the experimental results. The RSM study demonstrated that, biodiesel ratio of 32% with 816-W engine load and 470 bar injection pressure are the optimum engine operating parameters. It is found that the ANN with RSM support is a good tool for predict and optimize of diesel engine parameters powered with diesel/biodiesel mixtures. © 2020 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofFuelen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectBiodieselen_US
dc.subjectDiesel engineen_US
dc.subjectOptimizationen_US
dc.subjectPredictionen_US
dc.subjectResponse surface methodologyen_US
dc.subjectBrakesen_US
dc.subjectCarbon monoxideen_US
dc.subjectForecastingen_US
dc.subjectMultilayer neural networksen_US
dc.subjectNetwork layersen_US
dc.subjectNeural networksen_US
dc.subjectNitrogen oxidesen_US
dc.subjectSmokeen_US
dc.subjectSurface propertiesen_US
dc.subjectBrake specific fuel consumptionen_US
dc.subjectBrake thermal efficiencyen_US
dc.subjectCompression ignition engineen_US
dc.subjectExhaust gas temperaturesen_US
dc.subjectMulti layer perceptron networksen_US
dc.subjectPerformance and emissionsen_US
dc.subjectSingle-cylinder diesel engineen_US
dc.subjectDiesel enginesen_US
dc.titlePerformance and emission prediction of a compression ignition engine fueled with biodiesel-diesel blends: A combined application of ANN and RSM based optimizationen_US
dc.typeArticleen_US
dc.identifier.volume269en_US
dc.authorid0000-0002-6187-6722-
dc.identifier.doi10.1016/j.fuel.2020.117472-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85080058229en_US
dc.identifier.wosWOS:000520021800064en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept05.04. Journalism-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

159
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

125
checked on Nov 16, 2024

Page view(s)

34
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.