Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/38710
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorKıraç, Alp Arslan-
dc.contributor.authorYılmaz, Fatma-
dc.date.accessioned2021-09-06T13:22:31Z
dc.date.available2021-09-06T13:22:31Z
dc.date.issued2021-08-
dc.identifier.urihttps://hdl.handle.net/11499/38710-
dc.description.abstractL2[0; 1] uzayında, Dirichlet sınır ko¸sulu ile q(x) 2 W2 1 [0; 1], k = 0; 1 için q(k)(0) = q(k)(1) reel-de?gerli bir fonksiyon olmak üzere self-adjoint Sturm-Liouville operatörü göz önüne alınmı¸stır. Dirichlet sınır ko¸sulu ile Sturm-Liouville operatörünün spektrumları incelenmi¸stir ve Dirichlet spektrumu verildi?ginde hemen hemen her yerde q = 0 oldu?gu elde edilmi¸stir.en_US
dc.description.abstractIn the space L2[0; 1], we consider the self-adjoint Sturm-Liouville operator with Dirichlet boundary condition such that q(x) 2 W2 1 [0; 1] is a real-valued function and q(k)(0) = q(k)(1) for k = 0; 1. The spectra of the Dirichlet boundary condition with the Sturm-Liouville operator were investigated, and when the Dirichlet spectrum was given , it was obtained that q = 0 a. e.en_US
dc.language.isotren_US
dc.publisherPamukkale Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSturm-Liouville operatören_US
dc.subjectDirichlet sınır koşuluen_US
dc.subjectTers problemleren_US
dc.subjectSturm-Liouville operatoren_US
dc.subjectDirichlet boundary conditionen_US
dc.subjectInverse problemsen_US
dc.titleBazı self - adjoint sturm - liouville operatörler için ters problemleren_US
dc.title.alternativeInverse problems for some self - adjoint sturm - Liouville operatorsen_US
dc.typeMaster Thesisen_US
dc.relation.publicationcategoryTezen_US
dc.identifier.yoktezid690007en_US
dc.ownerPamukkale University-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeMaster Thesis-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1tr-
crisitem.author.dept06.01. Clinical Sciences-
Appears in Collections:Tez Koleksiyonu
Files in This Item:
File Description SizeFormat 
Fatma Yılmaz.pdf333.66 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

84
checked on Aug 24, 2024

Download(s)

88
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.