Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/39679
Title: | Elektrikli ve konvansiyonel araçlara ait iki şasi tasarımının yandan çarpışma deformasyonlarının incelenmesi | Other Titles: | Examination of side collision distortions of two chassis designs for electric and conventional | Authors: | Çimendağ, Muhammet | Advisors: | Yılmaz Ulu, Eylem | Keywords: | Çarpışma Analizi Yandan Çarpışma Testi Elektrikli Araçlar Crash Analysis Side Crash Test Electric Vehicles |
Publisher: | Pamukkale Üniversitesi Fen Bilimleri Enstitüsü | Abstract: | Otomobiller insanlık tarihinde devrim niteliği taşıyan ve yaşam standardına yeni bir boyut kazandıran icatlardan olup yüzyılı aşkın bir süredir yaygın olarak kullanılmakta ve her geçen yılda yapılan değişiklikler ve yenilikleriyle daha çok rağbet görmektedir. Bunun yanı sıra otomobiller hayat kalitemizi arttırsa da fosil yakıt ile çalışmaları dolayısıyla, CO yayılımına neden olmaktadır. Bu gazın çevre ve insan sağlığına verdiği zarar sebebiyle yakıt olarak yenilenebilir enerji kullanabilen hibrit veya elektrikli otomobillere ilgi artmıştır. Ancak elektrikli araçlarda harekete geçirici parçalar konvansiyonel araçlara nazaran daha farklı olduğu için aracın belirli kısımlarında tasarım farklılıklarına gidilmiştir. Araç tasarımı alanında kazaların önlenmesi veya kaza anında can ve mal hasarını en aza indirgemek için çarpışma önlemleri otomotiv firmaları tarafından önemsenmekte olup, bu konuda geniş araştırmalar ve deneysel faaliyetler sürdürülmektedir. Bu çalışmada yandan çarpışma anında elektrikli araç ve konvansiyonel araçların şasi üzerindeki yük dağılımı incelenmiştir. Yapılan literatür taraması ve mühendislik hesaplamalarının ardından Solidworks programı kullanılarak her iki tür araç için aynı segmentte şasiler tasarlanmıştır. Tasarımı tamamlanan şasiler ANSYS Workbench programında bulunan Explicit modülünde Yan Darbe Testi ve Kutup Darbe Testinde belirlenen hız sınırlarının ortalaması alınarak 40 km/h hızla çarpışma analizi gerçekleştirilmiştir. Çarpışma sırasında oluşan yük sebebiyle elektrikli araç şasisinde 150,72 mm, konvansiyonel araç şasisinde ise 403,78 mm deformasyon meydana gelmiştir. Deformasyonlar sonucunda elektrikli araç şasi tabanında 1228,2 MPa, konvansiyonel araç şasi tabanında 1000,2 MPa gerilme meydana gelmiştir. Bu gerilmeler tasarlanan şasi tabanlarında akma sınırını aşarak kalıcı şekil değişikliğine sebep olmuş fakat herhangi bir kopma durumu oluşmamıştır. Gerçekleştirilen analiz ile araç şasileri üzerindeki yük dağılımı oluşturulan simülasyon ve grafikler kullanılarak karşılaştırılmıştır. Automobiles are one of the inventions that have revolutionized human history and added a new dimension to the standard of living and have been widely used for over a century and are more popular with their changes and innovations made every year. In addition, although cars increase our quality of life, their work with fossil fuels causes CO emissions. Due to the damage this gas causes to the environment and human health, interest has increased in hybrid or electric cars that can use renewable energy as fuel. However, since the mobilizing parts in electric vehicles are different from conventional vehicles, design differences have been made in certain parts of the vehicle. In the field of vehicle design, collision measures are taken into consideration by automotive companies in order to prevent accidents or minimize life and property damage in the event of an accident, and extensive research and experimental activities are carried out in this regard. In this study, the load distribution on the chassis of electric vehicles and conventional vehicles at the time of impact was examined. After the literature review and engineering calculations, chassis in the same segment were designed for both types of vehicles using the Solidworks program. The chassis, which was designed, were performed in the Explicit module in the ANSYS Workbench program, taking the average speed limits determined in the Side Impact Test and Polar Impact Test and performing collision analysis at 40 km/h. During the collision, 150,72 mm in the electric vehicle chassis and 403,78 mm deformation in the conventional vehicle chassis has occurred. As a result of deformations, 1228.2 MPa in the electric vehicle chassis base, 1000.2 MPa stress on the base of the conventional vehicle chassis. These stresses have caused the permanent shape change in the designed chassis bases, but no break conditions have occurred. The load distribution on the vehicle chassis was compared using the simulation and graphics created on the vehicle chassis. Automobiles are one of the inventions that have revolutionized human history and added a new dimension to the standard of living and have been widely used for over a century and are more popular with their changes and innovations made every year. In addition, although cars increase our quality of life, their work with fossil fuels causes CO emissions. Due to the damage this gas causes to the environment and human health, interest has increased in hybrid or electric cars that can use renewable energy as fuel. However, since the mobilizing parts in electric vehicles are different from conventional vehicles, design differences have been made in certain parts of the vehicle. In the field of vehicle design, collision measures are taken into consideration by automotive companies in order to prevent accidents or minimize life and property damage in the event of an accident, and extensive research and experimental activities are carried out in this regard. In this study, the load distribution on the chassis of electric vehicles and conventional vehicles at the time of impact was examined. After the literature review and engineering calculations, chassis in the same segment were designed for both types of vehicles using the Solidworks program. The chassis, which was designed, were performed in the Explicit module in the ANSYS Workbench program, taking the average speed limits determined in the Side Impact Test and Polar Impact Test and performing collision analysis at 40 km/h. During the collision, 150,72 mm in the electric vehicle chassis and 403,78 mm deformation in the conventional vehicle chassis has occurred. As a result of deformations, 1228.2 MPa in the electric vehicle chassis base, 1000.2 MPa stress on the base of the conventional vehicle chassis. These stresses have caused the permanent shape change in the designed chassis bases, but no break conditions have occurred. The load distribution on the vehicle chassis was compared using the simulation and graphics created on the vehicle chassis. |
URI: | https://hdl.handle.net/11499/39679 |
Appears in Collections: | Tez Koleksiyonu |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Muhammet Çimendağ.pdf | 4.59 MB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
258
checked on Aug 24, 2024
Download(s)
650
checked on Aug 24, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.