Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4428
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDombaycı, Ömer Altay-
dc.contributor.authorÇivril, Önder-
dc.date.accessioned2019-08-16T11:34:01Z-
dc.date.available2019-08-16T11:34:01Z-
dc.date.issued2006-
dc.identifier.issn1300-686X-
dc.identifier.urihttps://hdl.handle.net/11499/4428-
dc.description.abstractIn this study, the artificial neural networks have been used for the estimation of hourly ambient temperature in Denizli, Turkey. The model was trained and tested with four years (2002-2005) of hourly mean temperature values. The hourly temperature values for the years 2002-2004 were used in training phase, the values for the year 2005 were used to test the model. The architecture of the ANN model was the multi-layer feedforward architecture and has three layers. Inputs of the network were month, day, hour, and two hourly mean temperatures at the previous hours, and the output was the mean temperature at the hour specified in the input. In the model, Levenberg-Marquardt learning algorithm which is a variant of backpropagation was used. With the software developed in Matlab, an ANN was constructed, trained, and tested for a different number of neurons in its hidden layer. The best result was obtained for 27 neurons, where R2, RMSE and MAPE values were found to be 0.99999, 0.92024 and 0.20900% for training, and 0.9999, 0.91301 and 0.20907% for test. The results show that the artificial neural network is powerful an alternate method in temperature estimations. © Association for Scientific Research.en_US
dc.language.isoenen_US
dc.relation.ispartofMathematical and Computational Applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAmbient temperatureen_US
dc.subjectEstimationen_US
dc.subjectNeural networken_US
dc.subjectBackpropagationen_US
dc.subjectLearning algorithmsen_US
dc.subjectMathematical modelsen_US
dc.subjectParameter estimationen_US
dc.subjectTemperatureen_US
dc.subjectFeedforward architectureen_US
dc.subjectLevenberg-Marquardt learning algorithmen_US
dc.subjectTemperature estimationsen_US
dc.subjectNeural networksen_US
dc.titleEstimation of hourly mean ambient temperatures with artificial neural networksen_US
dc.typeArticleen_US
dc.identifier.volume11en_US
dc.identifier.issue3en_US
dc.identifier.startpage215en_US
dc.identifier.endpage224en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-33847697813en_US
dc.identifier.trdizinid62544en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale_University-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept20.02. Metallurgical And Materials Engineering-
crisitem.author.dept31.04. Computer technologies-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
Files in This Item:
File SizeFormat 
mca-11-00215.pdf187.14 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Oct 13, 2024

Page view(s)

50
checked on Aug 24, 2024

Download(s)

18
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.