Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/4519
Title: | Effects of plastic hinge properties in nonlinear analysis of reinforced concrete buildings | Authors: | İnel, Mehmet Özmen, Hayri Baytan |
Keywords: | Nonlinear hinge properties Nonlinear static procedure Nonlinear time history Plastic hinge length Pushover analysis Transverse steel amount Building codes Regulatory compliance Reinforced concrete Structural analysis Structural frames Plastic hinge properties Concrete buildings building modeling nonlinearity reinforced concrete structural analysis |
Abstract: | Due to its simplicity, the structural engineering profession has been using the nonlinear static procedure (NSP) or pushover analysis. Modeling for such analysis requires the determination of the nonlinear properties of each component in the structure, quantified by strength and deformation capacities, which depend on the modeling assumptions. Pushover analysis is carried out for either user-defined nonlinear hinge properties or default-hinge properties, available in some programs based on the FEMA-356 and ATC-40 guidelines. While such documents provide the hinge properties for several ranges of detailing, programs may implement averaged values. The user needs to be careful; the misuse of default-hinge properties may lead to unreasonable displacement capacities for existing structures. This paper studies the possible differences in the results of pushover analysis due to default and user-defined nonlinear component properties. Four- and seven-story buildings are considered to represent low- and medium- rise buildings for this study. Plastic hinge length and transverse reinforcement spacing are assumed to be effective parameters in the user-defined hinge properties. Observations show that plastic hinge length and transverse reinforcement spacing have no influence on the base shear capacity, while these parameters have considerable effects on the displacement capacity of the frames. Comparisons point out that an increase in the amount of transverse reinforcement improves the displacement capacity. Although the capacity curve for the default-hinge model is reasonable for modern code compliant buildings, it may not be suitable for others. Considering that most existing buildings in Turkey and in some other countries do not conform to requirements of modern code detailing, the use of default hinges needs special care. The observations clearly show that the user-defined hinge model is better than the default-hinge model in reflecting nonlinear behavior compatible with the element properties. However, if the default-hinge model is preferred due to simplicity, the user should be aware of what is provided in the program and should avoid the misuse of default-hinge properties. © 2006 Elsevier Ltd. All rights reserved. | URI: | https://hdl.handle.net/11499/4519 https://doi.org/10.1016/j.engstruct.2006.01.017 |
ISSN: | 0141-0296 |
Appears in Collections: | Mühendislik Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
198
checked on Dec 14, 2024
WEB OF SCIENCETM
Citations
149
checked on Dec 19, 2024
Page view(s)
58
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.