Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/45680
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTiver, Mehmet-
dc.date.accessioned2022-09-19T11:05:16Z-
dc.date.available2022-09-19T11:05:16Z-
dc.date.issued2022-
dc.identifier.urihttps://hdl.handle.net/11499/45680-
dc.description.abstractL2[0; 1] uzayında, keyi self adjoint sınır ko¸sulu ile üretilen L(q) Sturm-Liouville operatörü göz önüne alınmı¸stır. Burada q(x) 2 L1[0; 1] reel de?gerli bir fonksiyondur. Dirichlet, quasi-periyodik, periyodik ve anti-periyodik sınır ko¸sulları ile Sturm-Liouville operatörü için ters problem incelenmi¸stir.en_US
dc.description.abstractIn the space L2[0; 1], we consider L(q) Sturm-Liouville operator generated with arbitrary self-adjoint boundary conditions, where q(x) 2 L1[0; 1] is a real-valued function. The inverse problem for Dirichlet, quasi-periodic, periodic and anti-periodic boundary conditions with Sturm-Liouville operator were investigateden_US
dc.language.isotren_US
dc.publisherPamukkale Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectTers spektral teorien_US
dc.subjectAmbarzumyan teoremen_US
dc.subjectSturm-Liouville operatörüen_US
dc.subjectHill operatörüen_US
dc.subjectDirichleten_US
dc.subjectQuasi- periyodiken_US
dc.subjectPeriyodiken_US
dc.subjectAnti-Periyodik sınır koşullarıen_US
dc.subjectInverse spectral theoryen_US
dc.subjectAmbarzumyan theoremen_US
dc.subjectSturm-Liouville operatoren_US
dc.subjectHill operatoren_US
dc.subjectDirichleten_US
dc.subjectQuasi-periodicen_US
dc.subjectPeriodicen_US
dc.subjectAnti-Periodic boundary conditionsen_US
dc.titleHill operatörü ile ilgili ters spektral problemleren_US
dc.title.alternativeInverse spectral problems associated with hill operatoren_US
dc.typeMaster Thesisen_US
dc.relation.publicationcategoryTezen_US
dc.identifier.yoktezid759236en_US
dc.ownerPamukkale_University-
item.openairetypeMaster Thesis-
item.languageiso639-1tr-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.cerifentitytypePublications-
Appears in Collections:Tez Koleksiyonu (Fen Bilimleri Enstitüsü)
Files in This Item:
File Description SizeFormat 
PAU-edited.pdf277.92 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

108
checked on Sep 8, 2025

Download(s)

164
checked on Sep 8, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.