Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/4604
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGölcü, Mustafa.-
dc.date.accessioned2019-08-16T11:35:24Z
dc.date.available2019-08-16T11:35:24Z
dc.date.issued2006-
dc.identifier.issn0196-8904-
dc.identifier.urihttps://hdl.handle.net/11499/4604-
dc.identifier.urihttps://doi.org/10.1016/j.enconman.2005.06.023-
dc.description.abstractIn impellers with splitter blades, the difficulty in calculation of the flow area of the impeller is because of the unknown flow rate occurring in the two separate areas when the splitter blades are added. Experimental studies were made to investigate the effects of splitter blade length on deep well pump performance for different numbers of blades. Head-flow curves of deep well pump impellers with splitter blades were investigated using artificial neural networks (ANNs). Gradient descent (GD), Gradient descent with momentum (GDM) and Levenberg-Marquardt (LM) learning algorithms were used in the networks. Experimental studies were completed to obtain training and test data. Blade number (z), non-dimensional splitter blade length (L¯) and flow rate (Q) were used as the input layer, while the output is head (Hm). For the testing data, the root mean squared error (RMSE), fraction of variance (R 2) and mean absolute percentage error (MAPE) were found to be 0.1285, 0.9999 and 1.6821%, respectively. With these results, we believe that the ANN can be used for prediction of head-flow curves as an appropriate method in deep well pump impellers with splitter blades. © 2005 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.relation.ispartofEnergy Conversion and Managementen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBlade numberen_US
dc.subjectHead-flow curveen_US
dc.subjectNeural networksen_US
dc.subjectSplitter bladeen_US
dc.subjectError analysisen_US
dc.subjectImpellersen_US
dc.subjectLearning algorithmsen_US
dc.subjectTurbomachine bladesen_US
dc.subjectWell pumpsen_US
dc.subjectGradient descent with momentum (GDM)en_US
dc.subjectSplitter bladesen_US
dc.titleNeural network analysis of head-flow curves in deep well pumpsen_US
dc.typeArticleen_US
dc.identifier.volume47en_US
dc.identifier.issue7-8en_US
dc.identifier.startpage992
dc.identifier.startpage992en_US
dc.identifier.endpage1003en_US
dc.identifier.doi10.1016/j.enconman.2005.06.023-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-31144471022en_US
dc.identifier.wosWOS:000235512400011en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale_University-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

27
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

13
checked on Nov 21, 2024

Page view(s)

32
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.