Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/4604
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gölcü, Mustafa. | - |
dc.date.accessioned | 2019-08-16T11:35:24Z | |
dc.date.available | 2019-08-16T11:35:24Z | |
dc.date.issued | 2006 | - |
dc.identifier.issn | 0196-8904 | - |
dc.identifier.uri | https://hdl.handle.net/11499/4604 | - |
dc.identifier.uri | https://doi.org/10.1016/j.enconman.2005.06.023 | - |
dc.description.abstract | In impellers with splitter blades, the difficulty in calculation of the flow area of the impeller is because of the unknown flow rate occurring in the two separate areas when the splitter blades are added. Experimental studies were made to investigate the effects of splitter blade length on deep well pump performance for different numbers of blades. Head-flow curves of deep well pump impellers with splitter blades were investigated using artificial neural networks (ANNs). Gradient descent (GD), Gradient descent with momentum (GDM) and Levenberg-Marquardt (LM) learning algorithms were used in the networks. Experimental studies were completed to obtain training and test data. Blade number (z), non-dimensional splitter blade length (L¯) and flow rate (Q) were used as the input layer, while the output is head (Hm). For the testing data, the root mean squared error (RMSE), fraction of variance (R 2) and mean absolute percentage error (MAPE) were found to be 0.1285, 0.9999 and 1.6821%, respectively. With these results, we believe that the ANN can be used for prediction of head-flow curves as an appropriate method in deep well pump impellers with splitter blades. © 2005 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Energy Conversion and Management | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Blade number | en_US |
dc.subject | Head-flow curve | en_US |
dc.subject | Neural networks | en_US |
dc.subject | Splitter blade | en_US |
dc.subject | Error analysis | en_US |
dc.subject | Impellers | en_US |
dc.subject | Learning algorithms | en_US |
dc.subject | Turbomachine blades | en_US |
dc.subject | Well pumps | en_US |
dc.subject | Gradient descent with momentum (GDM) | en_US |
dc.subject | Splitter blades | en_US |
dc.title | Neural network analysis of head-flow curves in deep well pumps | en_US |
dc.type | Article | en_US |
dc.identifier.volume | 47 | en_US |
dc.identifier.issue | 7-8 | en_US |
dc.identifier.startpage | 992 | |
dc.identifier.startpage | 992 | en_US |
dc.identifier.endpage | 1003 | en_US |
dc.identifier.doi | 10.1016/j.enconman.2005.06.023 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-31144471022 | en_US |
dc.identifier.wos | WOS:000235512400011 | en_US |
dc.identifier.scopusquality | Q1 | - |
dc.owner | Pamukkale_University | - |
item.openairetype | Article | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.grantfulltext | none | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection Teknoloji Fakültesi Koleksiyonu WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
27
checked on Nov 16, 2024
WEB OF SCIENCETM
Citations
13
checked on Nov 21, 2024
Page view(s)
32
checked on Aug 24, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.