Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/47463
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYalçınkaya İ.-
dc.contributor.authorAhmad H.-
dc.contributor.authorTasbozan O.-
dc.contributor.authorKurt A.-
dc.date.accessioned2023-01-09T21:24:48Z-
dc.date.available2023-01-09T21:24:48Z-
dc.date.issued2022-
dc.identifier.issn2468-0133-
dc.identifier.urihttps://doi.org/10.1016/j.joes.2021.09.015-
dc.identifier.urihttps://hdl.handle.net/11499/47463-
dc.description.abstractIn this study, the authors obtained the soliton and periodic wave solutions for time fractional symmetric regularized long wave equation (SRLW) and Ostrovsky equation (OE) both arising as a model in ocean engineering. For this aim modified extended tanh-function (mETF) is used. While using this method, chain rule is employed to turn fractional nonlinear partial differential equation into the nonlinear ordinary differential equation in integer order. Owing to the chain rule, there is no further requirement for any normalization or discretization. Beta derivative which involves fractional term is used in considered mathematical models. Obtaining the exact solutions of these equations is very important for knowing the wave behavior in ocean engineering models. © 2021en_US
dc.description.sponsorshipNational Institute of Mental Health, NIMH: R21MH087925; National Heart, Lung, and Blood Institute, NHLBI: T15HL074286; Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD: R01HD059967en_US
dc.language.isoenen_US
dc.publisherShanghai Jiaotong Universityen_US
dc.relation.ispartofJournal of Ocean Engineering and Scienceen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAnalytical solutionen_US
dc.subjectBeta derivativeen_US
dc.subjectOstrovsky equationen_US
dc.subjectPeriodic wave solutionen_US
dc.subjectSoliton solutionsen_US
dc.subjectSymmetric regularized long wave equationen_US
dc.titleSoliton solutions for time fractional ocean engineering models with Beta derivativeen_US
dc.typeArticleen_US
dc.identifier.volume7en_US
dc.identifier.issue5en_US
dc.identifier.startpage444en_US
dc.identifier.endpage448en_US
dc.identifier.doi10.1016/j.joes.2021.09.015-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid6603167847-
dc.authorscopusid57220768187-
dc.authorscopusid36905749100-
dc.authorscopusid56513462000-
dc.identifier.scopus2-s2.0-85120606888en_US
dc.identifier.wosWOS:000875750200003en_US
dc.identifier.scopusqualityQ2-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.grantfulltextopen-
item.cerifentitytypePublications-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
Soliton solutions for time fractional.pdf1.29 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

28
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

22
checked on Nov 21, 2024

Page view(s)

82
checked on Aug 24, 2024

Download(s)

28
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.