Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/51924
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBoğar, Esref-
dc.date.accessioned2023-08-22T18:48:01Z-
dc.date.available2023-08-22T18:48:01Z-
dc.date.issued2022-
dc.identifier.issn2169-3536-
dc.identifier.urihttps://hdl.handle.net/11499/51924-
dc.identifier.urihttps://doi.org/10.1007/s13369-022-07364-6-
dc.description.abstractEstimating the parameters of photovoltaic (PV) models accurately is vital to increase the effectiveness of PV systems. During the past few years, many approaches have been developed to solve this problem. However, due to the presence of nonlinearity and multi-modality in the problem, the estimated parameters are usually not very accurate and reliable. Therefore, this paper proposes a novel hybrid algorithm called chaos game optimization-least squares (CGO-LS) algorithm. The novelty of CGO-LS is that it adopts a cascade estimation strategy based on parameter decomposition. By the aid of this decomposition, CGO-LS combines a sophisticated nonlinear optimization capability of chaos game optimization (CGO) and the power of the optimal linear least squares (LS) estimator. LS focuses directly on estimating linear parameters, thus reducing the workload of CGO and helping to increase its convergence speed. To validate the performance of CGO-LS, it is employed to estimate the parameters of four PV models, including single-diode, double-diode, three-diode models, and PV module model. The results obtained by CGO-LS are compared with those of CGO, six state-of-the-art metaheuristics, their hybridized versions with LS, as well as some reported results in the literature. The overall results show that CGO-LS possesses superior estimation performance and excellent robustness in emulating experimental datasets.en_US
dc.language.isoenen_US
dc.publisherIeee-Inst Electrical Electronics Engineers Incen_US
dc.relation.ispartofIEEE Accessen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPhotovoltaic modelsen_US
dc.subjectParameter estimationen_US
dc.subjectChaos game optimizationen_US
dc.subjectLeast squaresen_US
dc.subjectHybrid chaos game optimization-least squaresen_US
dc.subjectArtificial Bee Colonyen_US
dc.subjectI-V Characteristicsen_US
dc.subjectSolar-Cell Modelsen_US
dc.subjectSearch Algorithmen_US
dc.subjectJaya Algorithmen_US
dc.subjectExtractionen_US
dc.subjectIdentificationen_US
dc.subjectModulesen_US
dc.subjectPerformanceen_US
dc.subjectEvolutionen_US
dc.titleChaos Game Optimization-Least Squares Algorithm for Photovoltaic Parameter Estimation [2]en_US
dc.typeArticleen_US
dc.identifier.volume10en_US
dc.identifier.startpage6321en_US
dc.identifier.endpage6340en_US
dc.departmentPamukkale Universityen_US
dc.authoridbogar, esref/0000-0003-3640-363X-
dc.identifier.doi10.1007/s13369-022-07364-6-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85140082176en_US
dc.identifier.wosWOS:000984478700018en_US
dc.institutionauthor-
dc.identifier.scopusqualityQ1-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.dept20.03. Biomedical Engineering-
Appears in Collections:Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

16
checked on Nov 23, 2024

Page view(s)

40
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.