Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/51982
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKok, Ibrahim-
dc.contributor.authorOkay, F.Y.-
dc.contributor.authorMuyanlı, O.-
dc.contributor.authorÖzdemir, S.-
dc.date.accessioned2023-08-22T18:48:06Z-
dc.date.available2023-08-22T18:48:06Z-
dc.date.issued2023-
dc.identifier.issn2327-4662-
dc.identifier.urihttps://hdl.handle.net/11499/51982-
dc.identifier.urihttps://doi.org/10.1109/JIOT.2023.3287678-
dc.description.abstractArtificial intelligence (AI) and Machine Learning (ML) are widely employed to make the solutions more accurate and autonomous in many smart and intelligent applications in the Internet of Things (IoT). In these IoT applications, the performance and accuracy of AI/ML models are the main concerns; however, the transparency, interpretability, and responsibility of the models’ decisions are often neglected. Moreover, in AI/ML-supported next-generation IoT applications, there is a need for more reliable, transparent, and explainable systems. In particular, regardless of whether the decisions are simple or complex, how the decision is made, which features affect the decision, and their adoption and interpretation by people or experts are crucial issues. Also, people typically perceive unpredictable or opaque AI outcomes with skepticism, which reduces the adoption and proliferation of IoT applications. To that end, Explainable Artificial Intelligence (XAI) has emerged as a promising research topic that allows ante-hoc and post-hoc functioning and stages of black-box models to be transparent, understandable, and interpretable. In this paper, we provide an in-depth and systematic review of recent studies that use XAI models in the scope of the IoT domain. We classify the studies according to their methodology and application areas. Additionally, we highlight the challenges and open issues and provide promising future directions to lead the researchers in future investigations. IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIEEE Internet of Things Journalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectExplainabilityen_US
dc.subjectExplainable Artificial Intelligence (XAI)en_US
dc.subjectInternet of Thingsen_US
dc.subjectInternet of Things (IoT)en_US
dc.subjectInterpretabilityen_US
dc.subjectInterpretable Machine Learning (IML)en_US
dc.subjectMedical servicesen_US
dc.subjectPrediction algorithmsen_US
dc.subjectReal-time systemsen_US
dc.subjectSecurityen_US
dc.subjectSmart homesen_US
dc.subjectSurveysen_US
dc.subjectArtificial intelligenceen_US
dc.subjectAutomationen_US
dc.subjectIntelligent buildingsen_US
dc.subjectInteractive computer systemsen_US
dc.subjectLearning systemsen_US
dc.subjectReal time systemsen_US
dc.subjectExplainabilityen_US
dc.subjectExplainable artificial intelligence (XAI)en_US
dc.subjectInternet of thingen_US
dc.subjectInterpretabilityen_US
dc.subjectInterpretable machine learningen_US
dc.subjectMachine-learningen_US
dc.subjectMedical servicesen_US
dc.subjectPrediction algorithmsen_US
dc.subjectReal - Time systemen_US
dc.subjectSecurityen_US
dc.subjectSmart homesen_US
dc.subjectInternet of thingsen_US
dc.titleExplainable Artificial Intelligence (XAI) for Internet of Things: A Surveyen_US
dc.typeArticleen_US
dc.identifier.startpage1en_US
dc.identifier.endpage1en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1109/JIOT.2023.3287678-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57200283688-
dc.authorscopusid55568614900-
dc.authorscopusid57763398200-
dc.authorscopusid23467461900-
dc.identifier.scopus2-s2.0-85162887757en_US
dc.identifier.wosWOS:001045875700044en_US
dc.institutionauthor-
dc.identifier.scopusqualityQ1-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

37
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

20
checked on Nov 16, 2024

Page view(s)

60
checked on Aug 24, 2024

Download(s)

188
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.