Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/52205
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖziç, M.Ü.-
dc.contributor.authorBarstuğan, M.-
dc.contributor.authorÖzdamar, A.-
dc.date.accessioned2023-08-22T19:17:40Z-
dc.date.available2023-08-22T19:17:40Z-
dc.date.issued2023-
dc.identifier.issn1738-494X-
dc.identifier.urihttps://hdl.handle.net/11499/52205-
dc.identifier.urihttps://doi.org/10.1007/s12206-023-0740-y-
dc.descriptionArticle; Early Accessen_US
dc.description.abstractPress brakes are among the most important machines used in sheet metal processing. In these machines, different numbers of molds are used for sheet bending and these molds are placed in the system by an operator. However, this process is slow, error-prone, and dependent on human labor. In this study, a real-time system that automatically detects molds and manipulates a robotic arm was designed using YOLOv4 and image processing. YOLOv4, a deep learning (DL)-based object detection algorithm, was applied to detect the positions, types, and holes of molds. Classical image processing methods were implemented to find the center (X, Y) coordinates of the mold hole. This study shows that the press brake machines currently used in industry can be transformed into smart machines through DL, image processing, camera systems, and robotic arm features. © 2023, The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherKorean Society of Mechanical Engineersen_US
dc.relation.ispartofJournal of Mechanical Science and Technologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDeep learningen_US
dc.subjectImage processingen_US
dc.subjectMolden_US
dc.subjectPress brakeen_US
dc.subjectYOLOv4en_US
dc.subjectCamerasen_US
dc.subjectMoldsen_US
dc.subjectObject detectionen_US
dc.subjectPresses (machine tools)en_US
dc.subjectReal time systemsen_US
dc.subjectRobotic armsen_US
dc.subjectSheet metalen_US
dc.subjectCamera platformen_US
dc.subjectDeep learningen_US
dc.subjectError pronesen_US
dc.subjectHuman laboren_US
dc.subjectImages processingen_US
dc.subjectPress brakeen_US
dc.subjectReal - Time systemen_US
dc.subjectSheet bendingen_US
dc.subjectSheet-metal processingen_US
dc.subjectYOLOv4en_US
dc.subjectDeep learningen_US
dc.titleAn autonomous system design for mold loading on press brake machines using a camera platform, deep learning, and image processingen_US
dc.typeArticleen_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1007/s12206-023-0740-y-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid56246508200-
dc.authorscopusid57200139642-
dc.authorscopusid58522219000-
dc.identifier.scopus2-s2.0-85166678803en_US
dc.identifier.wosWOS:001042471100011en_US
dc.institutionauthor-
dc.identifier.scopusqualityQ2-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.dept20.03. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 22, 2024

Page view(s)

40
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.