Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/52210
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSoyer, Mehmet Alperen-
dc.contributor.authorTuzun, Nail-
dc.contributor.authorKarakaş, Özler-
dc.contributor.authorBerto, Filippo-
dc.date.accessioned2023-08-22T19:17:40Z-
dc.date.available2023-08-22T19:17:40Z-
dc.date.issued2023-
dc.identifier.issn8756-758X-
dc.identifier.issn1460-2695-
dc.identifier.urihttps://hdl.handle.net/11499/52210-
dc.identifier.urihttps://doi.org/10.1111/ffe.14054-
dc.description.abstractArtificial neural networks (ANNs) are a widely used machine learning approach for estimating low-cycle fatigue parameters. ANN structure has its parameters such as hidden layers, hidden neurons, activation functions, training functions, and so forth, and these parameters have a significant influence over the results. Three hidden layer combinations, the hidden neurons ranging from 1 to 25, and different activation functions like hyperbolic tangent sigmoid (tansig), logistic sigmoid (logsig), and linear (purelin) were used, and their effects on the low-cycle fatigue parameter estimation were investigated to determine optimal ANN structure. Based on the results, suggestions regarding ANN structure for the estimation of the low-cycle fatigue parameters and transition fatigue life were presented. For the output layer and hidden layers, the most suitable activation function was tansig. The optimal hidden neuron range has been found between 4 and 9. The neural network structure with one hidden layer was determined to be most suitable in terms of less knowledge, structural complexity, and computational time and power.en_US
dc.language.isoenen_US
dc.publisherWileyen_US
dc.relation.ispartofFatigue & Fracture of Engineering Materials & Structuresen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectartificial neural networksen_US
dc.subjectartificial neural network structureen_US
dc.subjectlow-cycle fatigueen_US
dc.subjectlow-cycle fatigue parametersen_US
dc.subjecttransition fatigue lifeen_US
dc.subjectRotating Cracked Shaftsen_US
dc.subjectStress Intensity Factoren_US
dc.subjectLife Estimationen_US
dc.subjectWelded-Jointsen_US
dc.subjectPredictionen_US
dc.subjectPerceptronen_US
dc.subjectAdsorptionen_US
dc.subjectLayeren_US
dc.titleAn investigation of artificial neural network structure and its effects on the estimation of the low-cycle fatigue parameters of various steelsen_US
dc.typeArticleen_US
dc.identifier.volume46en_US
dc.identifier.issue8en_US
dc.identifier.startpage2929en_US
dc.identifier.endpage2948en_US
dc.departmentPamukkale Universityen_US
dc.authoridSOYER, MEHMET ALPEREN/0000-0002-7169-0956-
dc.identifier.doi10.1111/ffe.14054-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57902013600-
dc.authorscopusid57205202957-
dc.authorscopusid24281714000-
dc.authorscopusid10042142600-
dc.identifier.scopus2-s2.0-85160610948en_US
dc.identifier.wosWOS:000994673200001en_US
dc.institutionauthor-
dc.identifier.scopusqualityQ1-
item.openairetypeArticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.cerifentitytypePublications-
crisitem.author.dept10.07. Mechanical Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
An investigation of artificial neural network structure.pdf3.44 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

8
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

8
checked on Nov 21, 2024

Page view(s)

42
checked on Aug 24, 2024

Download(s)

8
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.