Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/54977
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Çuhadar, İsmail | - |
dc.contributor.author | Kalkan, Ömür Kaya | - |
dc.date.accessioned | 2023-11-18T09:57:45Z | - |
dc.date.available | 2023-11-18T09:57:45Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 1070-5511 | - |
dc.identifier.issn | 1532-8007 | - |
dc.identifier.uri | https://doi.org/10.1080/10705511.2023.2247567 | - |
dc.identifier.uri | https://hdl.handle.net/11499/54977 | - |
dc.description | Article; Early Access | en_US |
dc.description.abstract | Simulation studies are needed to investigate how many score categories are sufficient to treat ordered categorical data as continuous, particularly for bifactor models. The current simulation study aims to address such needs by investigating the performance of estimation methods in the bifactor models with ordered categorical data. Results support the application of categorical estimators to the ordered categorical data rather than the continuous estimators when sample size is large (750). Otherwise, an applied researcher may have to use the continuous estimators due to the model non-convergence. In this circumstance, the number of response categories needs to be at least 6 to avoid the rejection of correctly specified bifactor models by the chi-square test and estimate the model parameters accurately. The robust maximum likelihood (MLR) may be chosen among two continuous estimators due to its smaller type I error rate for the chi-square test than the ML. Practical implications of study findings are discussed. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Routledge Journals, Taylor & Francis Ltd | en_US |
dc.relation.ispartof | Structural Equation Modeling-A Multidisciplinary Journal | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Bifactor models | en_US |
dc.subject | estimation methods | en_US |
dc.subject | number of score categories | en_US |
dc.subject | ordered categorical data | en_US |
dc.subject | Covariance Structure-Analysis | en_US |
dc.subject | Confirmatory Factor-Analysis | en_US |
dc.subject | Weighted Least-Squares | en_US |
dc.subject | Maximum-Likelihood | en_US |
dc.subject | Fit Indexes | en_US |
dc.subject | Robust Corrections | en_US |
dc.subject | Test Statistics | en_US |
dc.subject | Monte-Carlo | en_US |
dc.subject | Variables | en_US |
dc.subject | Elementary | en_US |
dc.title | Performance of Estimation Methods in Bifactor Models with Ordered Categorical Data | en_US |
dc.type | Article | en_US |
dc.department | Pamukkale University | en_US |
dc.identifier.doi | 10.1080/10705511.2023.2247567 | - |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.authorscopusid | 57223002334 | - |
dc.authorscopusid | 57163498300 | - |
dc.identifier.scopus | 2-s2.0-85172105574 | en_US |
dc.identifier.wos | WOS:001072160400001 | en_US |
dc.institutionauthor | … | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 09.05. Educational Sciences | - |
Appears in Collections: | Eğitim Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
1
checked on Mar 8, 2025
WEB OF SCIENCETM
Citations
1
checked on Mar 7, 2025
Page view(s)
66
checked on Mar 4, 2025
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.