Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/56536
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzic, M.U.-
dc.contributor.authorYilmaz, A.S.-
dc.contributor.authorSandiraz, H.I.-
dc.contributor.authorEstanto, B.H.-
dc.date.accessioned2024-01-30T14:31:12Z-
dc.date.available2024-01-30T14:31:12Z-
dc.date.issued2023-
dc.identifier.isbn9798350342154-
dc.identifier.urihttps://doi.org/10.1109/ISMSIT58785.2023.10304947-
dc.identifier.urihttps://hdl.handle.net/11499/56536-
dc.description7th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2023 -- 26 October 2023 through 28 October 2023 -- 194332en_US
dc.description.abstractBreast density is a structure that determines the ratio of glandular and connective tissue in a woman's breast, directly affecting the assessment of breast cancer risk in radiological images. According to the Breast Imaging and Reporting Data System, it is classified on an international scale as follows: fatty (A), scattered density (B), heterogeneously dense (C), and extremely dense (D). The specified density categories can be examined in four views from a single patient, which are Right Craniocaudal, Right Mediolateral Oblique, Left Craniocaudal, and Left Mediolateral Oblique, using low-dose X-ray-based mammography. One of the major challenges in artificial intelligence-based breast density classification studies is the presence of the pectoral muscle, which affects the results in Right Mediolateral Oblique and Left Mediolateral Oblique views. Therefore, pre-processing methods are used to attempt automatic or semi-automatic removal of pectoral muscle from the images. This study proposes an approach for breast density classification using four-view mammograms from the VinDr-Mammo dataset, with the YOLOv8 segmentation module, while ensuring that the pectoral muscle is not excluded from the image. As a result of the study, successful breast density classification was achieved without removing the pectoral muscle, and the advantages and disadvantages of the system were discussed. © 2023 IEEE.en_US
dc.description.sponsorshipPamukkale Üniversitesi, PAÜ: 2023LÖKAP007en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof7th International Symposium on Multidisciplinary Studies and Innovative Technologies, ISMSIT 2023 - Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBreast Densityen_US
dc.subjectClassificationen_US
dc.subjectDeep Learningen_US
dc.subjectMammographyen_US
dc.subjectYOLOv8en_US
dc.subjectClassification (of information)en_US
dc.subjectCollagenen_US
dc.subjectDeep learningen_US
dc.subjectE-learningen_US
dc.subjectImage segmentationen_US
dc.subjectMuscleen_US
dc.subjectRisk assessmenten_US
dc.subjectX ray screensen_US
dc.subjectBreast densityen_US
dc.subjectBreast density classificationsen_US
dc.subjectCraniocaudalen_US
dc.subjectDeep learningen_US
dc.subjectDensity levelsen_US
dc.subjectLearning-based segmentationen_US
dc.subjectMediolateral obliquesen_US
dc.subjectPectoral musclesen_US
dc.subjectSegmentation modelsen_US
dc.subjectYOLOv8en_US
dc.subjectMammographyen_US
dc.titleAn Approach to Classifying Breast Density Level Using Deep Learning-Based Segmentation Model on Full-Field Digital Mammogramsen_US
dc.typeConference Objecten_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1109/ISMSIT58785.2023.10304947-
dc.authorscopusid56246508200-
dc.authorscopusid58753584200-
dc.authorscopusid58753584300-
dc.authorscopusid58753723400-
dc.identifier.scopus2-s2.0-85179123087en_US
dc.institutionauthor-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept20.03. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
Show simple item record



CORE Recommender

Page view(s)

52
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.