Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/56716
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAl, S.-
dc.contributor.authorUysal, Ciloglu, F.-
dc.contributor.authorAkcay, A.-
dc.contributor.authorKoluman, A.-
dc.date.accessioned2024-02-24T14:32:18Z-
dc.date.available2024-02-24T14:32:18Z-
dc.date.issued2024-
dc.identifier.issn0309-1740-
dc.identifier.urihttps://doi.org/10.1016/j.meatsci.2023.109421-
dc.identifier.urihttps://hdl.handle.net/11499/56716-
dc.description.abstractShiga toxin-producing Escherichia coli (STEC) can be life-threatening and lead to major outbreaks. The prevention of STEC-related infections can be provided by control measures at all stages of the food chain. The growth performance of E. coli O157:H7 at different temperatures in raw ground beef spiked with cocktail inoculum was investigated using machine learning (ML) models to address this problem. After spiking, ground beef samples were stored at 4, 10, 20, 30 and 37 °C. Repeated E. coli O157 enumeration was performed at 0–96 h with 21 times repeated counting. The obtained microbiological data were evaluated with ML methods (Artificial Neural Network (ANN), Random Forest (RF), Support Vector Regression (SVR), and Multiple Linear Regression (MLR)) and statistically compared for valid prediction. The coefficient of determination (R2) and mean squared error (MSE) are two essential criteria used to evaluate the model performance regarding the comparison between the observed value and the prediction made by the model. RF model showed superior performance with 0.98 R2 and 0.08 MSE values for predicting the growth performance of E. coli O157 at different temperatures. MLR model predictions were obtained further from the observed values with 0.66 R2 and 2.7 MSE values. Our results indicate that ML methods can predict of E. coli O157:H7 growth in ground beef at different temperatures to strengthen food safety professionals and legal authorities to assess contamination risks and determine legal limits and criteria proactively. © 2023en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofMeat Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEscherichia coli O157:H7en_US
dc.subjectGround beefen_US
dc.subjectMachine learning methodsen_US
dc.subjectMicrobial growth predictionen_US
dc.subjectBeefen_US
dc.subjectDigital storageen_US
dc.subjectEscherichia colien_US
dc.subjectFood safetyen_US
dc.subjectForestryen_US
dc.subjectMachine learningen_US
dc.subjectMean square erroren_US
dc.subjectMultiple linear regressionen_US
dc.subjectNeural networksen_US
dc.subjectRisk assessmenten_US
dc.subjectE.coli O157:H7en_US
dc.subjectEscherichia coli O157:H7en_US
dc.subjectGround beefen_US
dc.subjectGrowth performanceen_US
dc.subjectMachine learning methodsen_US
dc.subjectMachine learning modelsen_US
dc.subjectMean squared erroren_US
dc.subjectMicrobial growthen_US
dc.subjectMicrobial growth predictionen_US
dc.subjectShiga toxin-producing Escherichia colien_US
dc.subjectForecastingen_US
dc.subjectarticleen_US
dc.subjectartificial neural networken_US
dc.subjectbeefen_US
dc.subjectcontrolled studyen_US
dc.subjectEscherichia coli O157en_US
dc.subjectEscherichia coli O157:H7en_US
dc.subjectfood chainen_US
dc.subjectfood safetyen_US
dc.subjectgrowthen_US
dc.subjectinoculationen_US
dc.subjectmachine learningen_US
dc.subjectmicrobial growthen_US
dc.subjectmultiple linear regression analysisen_US
dc.subjectnonhumanen_US
dc.subjectpredictionen_US
dc.subjectpreventionen_US
dc.subjectrandom foresten_US
dc.subjectShiga toxin producing Escherichia colien_US
dc.subjectstorage temperatureen_US
dc.subjectsupport vector machineen_US
dc.subjecttemperatureen_US
dc.titleMachine learning models for prediction of Escherichia coli O157:H7 growth in raw ground beef at different storage temperaturesen_US
dc.typeArticleen_US
dc.identifier.volume210en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1016/j.meatsci.2023.109421-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid55798818900-
dc.authorscopusid57220080834-
dc.authorscopusid15847800500-
dc.authorscopusid8937670400-
dc.identifier.pmid38237258en_US
dc.identifier.scopus2-s2.0-85182735229en_US
dc.identifier.wosWOS:001170231100001en_US
dc.institutionauthor-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.dept20.03. Biomedical Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 16, 2024

Page view(s)

54
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.