Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/56723
Title: Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma
Authors: Chanda, T.
Hauser, K.
Hobelsberger, S.
Bucher, T.-C.
Garcia, C.N.
Wies, C.
Kittler, H.
Tschandl, Philipp
Navarrete-Dechent, Cristian
Podlipnik, Sebastian
Chousakos, Emmanouil
Majstorovic, Jovana
Foreman, Tanya
Balcere, Alise
Peternel, Sandra
Sarap, Sergei
Özdemir, İrem
Barnhill, Raymond L.
Sondermann, Wiebke
Llamas-Velasco, Mar
Poch, Gabriela
Krieghoff-Henning, Eva
Korsing, Sören
Ghoreschi, Kamran
Maul, Julia-Tatjana
Gellrich, Frank Friedrich
Heppt, Markus V.
Erdmann, Michael
Haferkamp, Sebastian
Drexler, Konstantin
Goebeler, Matthias
Schilling, Bastian
Zafirovik, Zorica
Utikal, Jochen S.
Lengyel, Zsuzsanna
Salava, Alexander
Fröhling, Stefan
Thiem, Alexander
Dimitrios, Alexandris
Ammar, Amr Mohammad
Vučemilović, Ana Sanader
Yoshimura, Andrea Miyuki
Pföhler, Claudia
Ilieva, Andzelka
Gesierich, Anja
Rasulova, Gunel
Reimer-Taschenbrecker, Antonia
Kolios, Antonios G. A.
Ferhatosmanoğlu, Arzu
Kalva, Arturs
Simeonovski, Viktor
Beyens, Aude
Pereira, Manuel P.
Erdil, Dilara Ilhan
Jovanovic, Dobrila
Racz, Emoke
Cenk, Hulya
Bechara, Falk G.
Vaccaro, Federico
Dimitriou, Florentia
Brinker, Titus J.
Frings, Verena Gerlinde
Thamm, Janis Raphael
Yanatma, Irem
Kolm, Isabel
Hoorens, Isabelle
Sheshova, Iskra Petrovska
Jocic, Ivana
Knuever, Jana
Bondare-Ansberga, Vanda
Fleißner, Janik
Riad, Hassan
Ahlgrimm-Siess, Verena
Dahlberg, Johan
Lluch-Galcerá, Juan José
Figueroa, Juan Sebastián Andreani
Holzgruber, Julia
Welzel, Julia
Damevska, Katerina
Mayer, Kristine Elisabeth
Garzona-Navas, Laura
Maul, Lara Valeska
Petrovska, Lidija
Braun, Ralph P.
Bley, Laura Isabell
Schmitt, Laurenz
Reipen, Lena
Shafik, Lidia
Debus, Dirk
Golle, Linda
Sotirovski, Tomica
Jopen, Luise
Persa, Oana-Diana
Gogilidze, Magda
Burg, Maria Rosa
Morales-Sánchez, Martha Alejandra
Sławińska, Martyna
Mengoni, Miriam
Welponer, Tobias
Hartmann, Tim
Dragolov, Miroslav
Iglesias-Pena, Nicolás
Booken, Nina
Wobser, Marion
Enechukwu, Nkechi Anne
Tsakiri, Amalia
Oninla, Olumayowa Abimbola
Theofilogiannakou, Panagiota
Kage, Paula
Neto, Roque Rafael Oliveira
Braun, Stephan Alexander
Peralta, Rosario
Afiouni, Rym
Schuh, Sandra
Alhajwan, Linda
Finck, Stefanie
Hartmann, Sören
Schnabl-Scheu, Saskia
Vural, Seçil
Damevska, Stefana
Hudson, Sharon
Lehr, Saskia
Saa, Sonia Rodriguez
Crnaric, Iva
Keywords: accuracy assessment
cancer
detection method
artificial intelligence
dermatologist
differential diagnosis
human
melanoma
trust
Artificial Intelligence
Dermatologists
Diagnosis, Differential
Humans
Melanoma
Trust
Publisher: Nature Research
Abstract: Artificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists’ decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alongside its differential diagnoses of melanomas and nevi. Through a three-phase study, we assess its impact on dermatologists’ diagnostic accuracy, diagnostic confidence, and trust in the XAI-support. Our results show strong alignment between XAI and dermatologist explanations. We also show that dermatologists’ confidence in their diagnoses, and their trust in the support system significantly increase with XAI compared to conventional AI. This study highlights dermatologists’ willingness to adopt such XAI systems, promoting future use in the clinic. © 2024, The Author(s).
URI: https://doi.org/10.1038/s41467-023-43095-4
https://hdl.handle.net/11499/56723
ISSN: 2041-1723
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Tıp Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Show full item record



CORE Recommender

SCOPUSTM   
Citations

14
checked on Oct 13, 2024

WEB OF SCIENCETM
Citations

2
checked on Oct 31, 2024

Page view(s)

64
checked on Aug 24, 2024

Download(s)

18
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.