Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/56995
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlcazar, Javier-
dc.contributor.authorVakili, Mohammad Ghazi-
dc.contributor.authorKalayci, Can B.-
dc.contributor.authorPerdomo-Ortiz, Alejandro-
dc.date.accessioned2024-05-06T16:24:36Z-
dc.date.available2024-05-06T16:24:36Z-
dc.date.issued2024-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://doi.org/10.1038/s41467-024-46959-5-
dc.identifier.urihttps://hdl.handle.net/11499/56995-
dc.description.abstractDevising an efficient exploration of the search space is one of the key challenges in the design of combinatorial optimization algorithms. Here, we introduce the Generator-Enhanced Optimization (GEO) strategy: a framework that leverages any generative model (classical, quantum, or quantum-inspired) to solve optimization problems. We focus on a quantum-inspired version of GEO relying on tensor-network Born machines, and referred to hereafter as TN-GEO. To illustrate our results, we run these benchmarks in the context of the canonical cardinality-constrained portfolio optimization problem by constructing instances from the S&P 500 and several other financial stock indexes, and demonstrate how the generalization capabilities of these quantum-inspired generative models can provide real value in the context of an industrial application. We also comprehensively compare state-of-the-art algorithms and show that TN-GEO is among the best; a remarkable outcome given the solvers used in the comparison have been fine-tuned for decades in this real-world industrial application. Also, a promising step toward a practical advantage with quantum-inspired models and, subsequently, with quantum generative models Solving combinatorial optimization problems using quantum or quantum-inspired machine learning models would benefit from strategies able to work with arbitrary objective functions. Here, the authors use the power of generative models to realise such a black-box solver, and show promising performances on some portfolio optimization examples.en_US
dc.language.isoenen_US
dc.publisherNature Portfolioen_US
dc.relation.ispartofNature Communicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPortfolioen_US
dc.subjectAlgorithmen_US
dc.titleEnhancing combinatorial optimization with classical and quantum generative modelsen_US
dc.typeArticleen_US
dc.identifier.volume15en_US
dc.identifier.issue1en_US
dc.departmentPamukkale Universityen_US
dc.authoridKalayci, Can/0000-0003-2355-7015-
dc.authoridGhazi Vakili, mohammad/0000-0002-2927-4975-
dc.authoridPerdomo-Ortiz, Alejandro/0000-0001-7176-4719-
dc.identifier.doi10.1038/s41467-024-46959-5-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57219622144-
dc.authorscopusid57211116206-
dc.authorscopusid54951330900-
dc.authorscopusid35747037700-
dc.authorwosidKalayci, Can/K-5884-2013-
dc.authorwosidPerdomo-Ortiz, Alejandro/B-4753-2009-
dc.identifier.pmid38553469en_US
dc.identifier.scopus2-s2.0-85189016688en_US
dc.identifier.wosWOS:001195597700025en_US
dc.institutionauthor-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.09. Industrial Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
s41467-024-46959-5.pdf1.22 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 21, 2024

Page view(s)

38
checked on Aug 24, 2024

Download(s)

12
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.