Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/57264
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBolat, Cagin-
dc.contributor.authorCebi, Abdulkadir-
dc.contributor.authorÇoban, Sarp-
dc.contributor.authorErgene, Berkay-
dc.date.accessioned2024-06-01T09:10:26Z-
dc.date.available2024-06-01T09:10:26Z-
dc.date.issued2024-
dc.identifier.issn0930-777X-
dc.identifier.issn2195-8602-
dc.identifier.urihttps://doi.org/10.1515/ipp-2023-4481-
dc.identifier.urihttps://hdl.handle.net/11499/57264-
dc.description.abstractThis investigation aims to elucidate friction and wear features of additively manufactured recycled-ABS components by utilizing neural network algorithms. In that sense, it is the first initiative in the technical literature and brings fused deposition modeling (FDM) technology, recycled filament-based products, and artificial neural network strategies together to estimate the friction coefficient and volume loss outcomes. In the experimental stage, to provide the required data for five different neural algorithms, dry-sliding wear tests, and hardness measurements were conducted. As FDM printing variables, layer thickness (0.1, 0.2, and 0.3 mm), infill rate (40, 70, and 100 %), and building direction (vertical, and horizontal) were selected. The obtained results pointed out that vertically built samples usually had lower wear resistance than the horizontally built samples. This case can be clarified with the initially measured hardness levels of horizontally built samples and optical microscopic analyses. Besides, the Levenberg Marquard (LM) algorithm was the best option to foresee the wear outputs compared to other approaches. Considering all error levels in this paper, the offered results by neural networks are notably acceptable for the real industrial usage of material, mechanical, and manufacturing engineering areas.en_US
dc.language.isoenen_US
dc.publisherWalter De Gruyter Gmbhen_US
dc.relation.ispartofInternational Polymer Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectrecycled filamenten_US
dc.subjectfused deposition modelingen_US
dc.subjectfriction coefficienten_US
dc.subjectwear resistanceen_US
dc.subjectartificial neural networken_US
dc.subjectMechanical-Propertiesen_US
dc.subjectProcess Parametersen_US
dc.subjectFilamentsen_US
dc.subjectBehavioren_US
dc.subjectVirginen_US
dc.subjectPlaen_US
dc.titleEstimation of friction and wear properties of additively manufactured recycled-ABS parts using artificial neural network approach: effects of layer thickness, infill rate, and building directionen_US
dc.typeArticleen_US
dc.typeArticle; Early Accessen_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1515/ipp-2023-4481-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57219177016-
dc.authorscopusid57235137700-
dc.authorscopusid58927272600-
dc.authorscopusid57224902359-
dc.identifier.scopus2-s2.0-85191383923en_US
dc.identifier.wosWOS:001206567700001en_US
dc.institutionauthor-
item.cerifentitytypePublications-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairetypeArticle; Early Access-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.dept20.05. Mechanical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

34
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.