Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/57324
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞimsek, M.U.-
dc.contributor.authorKök, İ.-
dc.contributor.authorÖzdemir, S.-
dc.date.accessioned2024-06-01T09:10:53Z-
dc.date.available2024-06-01T09:10:53Z-
dc.date.issued2024-
dc.identifier.issn1386-7857-
dc.identifier.urihttps://doi.org/10.1007/s10586-024-04434-2-
dc.identifier.urihttps://hdl.handle.net/11499/57324-
dc.description.abstractAir pollution is one of the influential problems threatening the environment and human health today. Therefore, it is critical to develop predictive systems for proactive decisions in solving this problem. Since the prediction of air pollution depends on several complicated factors such as the accuracy of meteorology reports, air pollution accumulation, traffic flow, and industrial emissions, the contribution of historical or real-time predictions to the solution of the problem is limited. To address the existing limitations, we propose a novel AI-powered and Fog-based predictive complex event processing system (CepAIr) for the prediction of future air pollution rates. CepAIr predicts the future air quality of pollutant gases using RNN, LSTM, CNN, and SVR models. Then, it sends the prediction results to decision-makers in an understandable format, enabling them to take proactive actions. Finally, we evaluate the performance of the CepAIr with SVR and DL models. Additionally, we examine CepAIr in terms of end-to-end network delay and measure its impact on the network. The extensive simulation results demonstrate that the CepAIr predicts future pollutant gas concentrations with DL models (especially with CNN) with a high success rate while guaranteeing minimum end-to-end network delay. © The Author(s) 2024.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 118E212en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofCluster Computingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAir pollutionen_US
dc.subjectComplex event processing (CEP)en_US
dc.subjectDeep learningen_US
dc.subjectFog computingen_US
dc.subjectInternet of things (IoT)en_US
dc.subjectAir qualityen_US
dc.subjectComplex networksen_US
dc.subjectDecision makingen_US
dc.subjectFogen_US
dc.subjectFog computingen_US
dc.subjectForecastingen_US
dc.subjectIndustrial emissionsen_US
dc.subjectLong short-term memoryen_US
dc.subjectAir quality monitoringen_US
dc.subjectComplex event processingen_US
dc.subjectComplex eventsen_US
dc.subjectDeep learningen_US
dc.subjectEnd-to-end networken_US
dc.subjectEvent Processingen_US
dc.subjectInternet of thingen_US
dc.subjectNetwork-delayen_US
dc.subjectPollutant gasen_US
dc.subjectProcessing systemsen_US
dc.subjectInternet of thingsen_US
dc.titleCepair: an AI-powered and fog-based predictive CEP system for air quality monitoringen_US
dc.typeArticleen_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1007/s10586-024-04434-2-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57207703923-
dc.authorscopusid57200283688-
dc.authorscopusid23467461900-
dc.identifier.scopus2-s2.0-85190526351en_US
dc.identifier.wosWOS:001309626100020en_US
dc.institutionauthor-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

2
checked on Nov 16, 2024

Page view(s)

42
checked on Aug 24, 2024

Download(s)

8
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.