Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/57405
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYardımcı, Rezzan-
dc.contributor.authorBoğar, Eşref-
dc.date.accessioned2024-06-29T13:49:31Z-
dc.date.available2024-06-29T13:49:31Z-
dc.date.issued2024-
dc.identifier.issn1300-1884-
dc.identifier.issn1304-4915-
dc.identifier.urihttps://doi.org/10.17341/gazimmfd.1317413-
dc.identifier.urihttps://hdl.handle.net/11499/57405-
dc.description.abstractAccurate forecasting of health expenditures is a fundamental issue for the sustainability of health systems and policies. In this study, a trend -residual decomposition -based model is proposed to forecast T & uuml;rkiye's total healthcare expenditure with high accuracy. The proposed model has a two -stage forecasting procedure. In the first stage, the trend of the health expenditure time series is determined using polynomial regression. In the second stage, a residual model with optimized linear parameters by least squares estimation method and non-linear parameters by neural network algorithm is proposed to model the detrending part of the time series. The performance of the proposed model using healthcare expenditure data for the years 1999-2021 are compared with grey models, regression models, exponential smoothing models and ARIMA models. The results obtained by using the years 1999-2017 for training and the years 2018-2021 for test demonstrate that the proposed model has better modeling and forecasting performance than other models. Therefore, T & uuml;rkiye's total healthcare expenditure for the years 2022-2030 has been forecasted with the proposed model and it is predicted that it will reach 2.2 trillion TL in 2030.en_US
dc.language.isotren_US
dc.publisherGazi Univ, Fac Engineering Architectureen_US
dc.relation.ispartofJournal of The Faculty of Engineering and Architecture of Gazi Universityen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHealthcare expenditure forecastingen_US
dc.subjecttime series decompositionen_US
dc.subjectmodelingen_US
dc.subjectregressionen_US
dc.subjectneural network algorithmen_US
dc.subjectDemanden_US
dc.titleA trend-residual decomposition-based modeling approach for Türkiye's total healthcare expenditure forecastingen_US
dc.typeArticleen_US
dc.identifier.volume39en_US
dc.identifier.issue4en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.17341/gazimmfd.1317413-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid59167827300-
dc.authorscopusid57200536309-
dc.identifier.scopus2-s2.0-85195695513en_US
dc.identifier.trdizinid1257616en_US
dc.identifier.wosWOS:001236221100014en_US
dc.institutionauthor-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.languageiso639-1tr-
crisitem.author.dept20.03. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Page view(s)

26
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.