Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/58246
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOzic, M.U.-
dc.contributor.authorGelincik, B.-
dc.date.accessioned2024-11-20T18:04:21Z-
dc.date.available2024-11-20T18:04:21Z-
dc.date.issued2024-
dc.identifier.isbn979-833153149-2-
dc.identifier.urihttps://doi.org/10.1109/IDAP64064.2024.10710665-
dc.identifier.urihttps://hdl.handle.net/11499/58246-
dc.description8th International Artificial Intelligence and Data Processing Symposium, IDAP 2024 -- 21 September 2024 through 22 September 2024 -- Malatya -- 203423en_US
dc.description.abstractIn orthodontics, cephalometric analysis, which is widely used to evaluate the jaw structure, head, and facial skeleton, plays an important role in the clinical decision-making process. However, this analysis requires manual labeling of anatomical landmarks on the images of cephalometric X-rays. This process is time-consuming, prone to human error, and requires expertise. In recent years, with the prominence of deep learning and computer vision concepts, studies on automating cephalometric analysis have increased. In this study, we investigate the role of an artificial intelligence-based approach in detecting anatomical landmarks in cephalometric analysis using the YOLOv8 architecture, a recent deep learning model. The n-s-m-I submodels of the 'pose' module in the YOLOv8 architecture, which vary according to the parameter values, were tested. These models, which were trained by the transfer learning technique under the problem, were compared in detail, including the model used (n-s-m-l), and hyperparameter values, before and after data augmentation. The performance criteria were evaluated, and the advantages and disadvantages of the system were discussed at the end of the study. © 2024 IEEE.en_US
dc.description.sponsorshipPamukkale Üniversitesi, PAÜen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof8th International Artificial Intelligence and Data Processing Symposium, IDAP 2024en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAnatomical Landmarken_US
dc.subjectArtificial Intelligenceen_US
dc.subjectCephalometric X-rayen_US
dc.subjectDeep Learningen_US
dc.subjectPose Estimationen_US
dc.subjectContrastive Learningen_US
dc.subjectDental orthosesen_US
dc.subjectMusculoskeletal systemen_US
dc.subjectTransfer learningen_US
dc.subjectAnatomical landmarksen_US
dc.subjectCephalometric analysisen_US
dc.subjectCephalometric X-rayen_US
dc.subjectClinical decision makingen_US
dc.subjectDecision-making processen_US
dc.subjectDeep learningen_US
dc.subjectEstimation modelsen_US
dc.subjectLandmark detectionen_US
dc.subjectManual labelingen_US
dc.subjectPose-estimationen_US
dc.subjectDeep learningen_US
dc.titleArtificial Intelligence-Based Pose Estimation Model for Anatomical Landmark Detection in Lateral Cephalometric X-Raysen_US
dc.typeConference Objecten_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1109/IDAP64064.2024.10710665-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.authorscopusid56246508200-
dc.authorscopusid59391193300-
dc.identifier.scopus2-s2.0-85207898196en_US
dc.institutionauthor-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.grantfulltextnone-
item.cerifentitytypePublications-
crisitem.author.dept20.03. Biomedical Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.