Please use this identifier to cite or link to this item:
https://hdl.handle.net/11499/58376
Title: | Generalized Galilean Rotations | Authors: | Colakoglu, Harun Baris Ozturk, Iskender Celik, Oguzhan Ozdemir, Mustafa |
Keywords: | Galilean transformation generalized scalar product rotation matrix Rodrigues formula Cayley map Householder map |
Publisher: | MDPI | Abstract: | In this article, we give rotational motions on any straight line or any parabola in a scalar product space. To achieve this goal, we first define the generalized Galilean scalar product and determine the generalized Galilean skew symmetric and orthogonal matrices. Then, using the well-known Rodrigues, Cayley, and Householder maps, we produce the generalized Galilean rotation matrices. Finally, we show that these rotation matrices can also be used to determine parabolic rotational motion. | URI: | https://doi.org/10.3390/sym16111553 https://hdl.handle.net/11499/58376 |
ISSN: | 2073-8994 |
Appears in Collections: | İktisadi ve İdari Bilimler Fakültesi Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Generalized-Galilean-RotationsSymmetry.pdf | 336.46 kB | Adobe PDF | View/Open |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.