Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/58376
Title: Generalized Galilean Rotations
Authors: Colakoglu, Harun Baris
Ozturk, Iskender
Celik, Oguzhan
Ozdemir, Mustafa
Keywords: Galilean transformation
generalized scalar product
rotation matrix
Rodrigues formula
Cayley map
Householder map
Publisher: MDPI
Abstract: In this article, we give rotational motions on any straight line or any parabola in a scalar product space. To achieve this goal, we first define the generalized Galilean scalar product and determine the generalized Galilean skew symmetric and orthogonal matrices. Then, using the well-known Rodrigues, Cayley, and Householder maps, we produce the generalized Galilean rotation matrices. Finally, we show that these rotation matrices can also be used to determine parabolic rotational motion.
URI: https://doi.org/10.3390/sym16111553
https://hdl.handle.net/11499/58376
ISSN: 2073-8994
Appears in Collections:İktisadi ve İdari Bilimler Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
Generalized-Galilean-RotationsSymmetry.pdf336.46 kBAdobe PDFView/Open
Show full item record



CORE Recommender

Page view(s)

18
checked on Jan 21, 2025

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.