Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/6804
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSarı, Murat-
dc.date.accessioned2019-08-16T12:11:14Z
dc.date.available2019-08-16T12:11:14Z
dc.date.issued2009-
dc.identifier.issn1024-123X-
dc.identifier.urihttps://hdl.handle.net/11499/6804-
dc.identifier.urihttps://doi.org/10.1155/2009/912541-
dc.description.abstractAccurate solutions of the porous media equation that usually occurs in nonlinear problems of heat and mass transfer and in biological systems are obtained using a compact finite difference method in space and a low-storage total variation diminishing third-order Runge-Kutta scheme in time. In the calculation of the numerical derivatives, only a tridiagonal band matrix algorithm is encountered. Therefore, this scheme causes to less accumulation of numerical errors and less use of storage space. The computed results obtained by this way have been compared with the exact solutions to show the accuracy of the method. The approximate solutions to the equation have been computed without transforming the equation and without using linearization. Comparisons indicate that there is a very good agreement between the numerical solutions and the exact solutions in terms of accuracy. This method is seen to be a very good alternative method to some existing techniques for such realistic problems.en_US
dc.language.isoenen_US
dc.relation.ispartofMathematical Problems in Engineeringen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAlternative methodsen_US
dc.subjectApproximate solutionsen_US
dc.subjectBand matrixesen_US
dc.subjectCompact finite differencesen_US
dc.subjectExact solutionsen_US
dc.subjectHeat and mass transfersen_US
dc.subjectLow storagesen_US
dc.subjectNon-linear problemsen_US
dc.subjectNumerical derivativesen_US
dc.subjectNumerical errorsen_US
dc.subjectNumerical solutionsen_US
dc.subjectPorous mediasen_US
dc.subjectRunge-kuttaen_US
dc.subjectStorage spacesen_US
dc.subjectThird ordersen_US
dc.subjectTotal variation diminishingen_US
dc.subjectTridiagonalen_US
dc.subjectBiological systemsen_US
dc.subjectLinearizationen_US
dc.subjectMass transferen_US
dc.subjectNonlinear equationsen_US
dc.subjectPorous materialsen_US
dc.subjectRunge Kutta methodsen_US
dc.subjectFinite difference methoden_US
dc.titleSolution of the porous media equation by a compact finite difference methoden_US
dc.typeArticleen_US
dc.identifier.volume2009en_US
dc.authorid0000-0003-0508-2917-
dc.identifier.doi10.1155/2009/912541-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-65349104507en_US
dc.identifier.wosWOS:000265923300001en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
912541.pdf1.87 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

19
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

14
checked on Nov 21, 2024

Page view(s)

34
checked on Aug 24, 2024

Download(s)

20
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.