Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/7808
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHong, X.-
dc.contributor.authorİplikçi, Serdar-
dc.contributor.authorChen, S.-
dc.contributor.authorWarwick, K.-
dc.date.accessioned2019-08-16T12:32:20Z
dc.date.available2019-08-16T12:32:20Z
dc.date.issued2014-
dc.identifier.issn0890-6327-
dc.identifier.urihttps://hdl.handle.net/11499/7808-
dc.identifier.urihttps://doi.org/10.1002/acs.2293-
dc.description.abstractIn this paper, a new model-based proportional-integral-derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches. Copyright © 2012 John Wiley & Sons, Ltd.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Ltden_US
dc.relation.ispartofInternational Journal of Adaptive Control and Signal Processingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdaptive controlen_US
dc.subjectB-spline neural networken_US
dc.subjectDe Boor algorithmen_US
dc.subjectHammerstein modelen_US
dc.subjectMultistep ahead predictionen_US
dc.subjectPID controlleren_US
dc.subjectSystem identificationen_US
dc.subjectAlgorithmsen_US
dc.subjectElectric control equipmenten_US
dc.subjectIdentification (control systems)en_US
dc.subjectInterpolationen_US
dc.subjectJacobian matricesen_US
dc.subjectNeural networksen_US
dc.subjectNonlinear systemsen_US
dc.subjectAdaptive Controlen_US
dc.subjectDe Boor Algorithmen_US
dc.subjectMulti-stepen_US
dc.subjectPID controllersen_US
dc.subjectProportional control systemsen_US
dc.titleA model-based PID controller for Hammerstein systems using B-spline neural networksen_US
dc.typeArticleen_US
dc.identifier.volume28en_US
dc.identifier.issue3-5en_US
dc.identifier.startpage412
dc.identifier.startpage412en_US
dc.identifier.endpage428en_US
dc.identifier.doi10.1002/acs.2293-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84899124878en_US
dc.identifier.wosWOS:000333022500011en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.dept10.10. Computer Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
A model-based PID controller for Hammerstein systems using B-spline.pdf379.26 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

18
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

17
checked on Nov 21, 2024

Page view(s)

62
checked on Aug 24, 2024

Download(s)

48
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.