Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8241
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDilmen, Erdem-
dc.contributor.authorYılmaz, Selim-
dc.contributor.authorBeyhan, Selami-
dc.date.accessioned2019-08-16T12:37:29Z
dc.date.available2019-08-16T12:37:29Z
dc.date.issued2013-
dc.identifier.isbn9781479933433-
dc.identifier.urihttps://hdl.handle.net/11499/8241-
dc.identifier.urihttps://doi.org/10.1109/ICECCO.2013.6718274-
dc.description.abstractIn this paper, the well-known heuristic Artificial Bee Colony algorithm (ABC) and deterministic Levenberg-Marquardt (LM) optimization method are unified to get better performance of nonlinear optimization. In the proposed cascaded ABC-LM algorithm, the power of the ABC and LM algorithms are synergized to reduce computational-time and get rid of the problem 'stucking at local minima' of some nonlinear functions. Then, the proved power of the cascaded optimization is also tested on the training of Artificial Neural Network (ANN) for classification of XOR data and nonlinear system identification of real-time inverted pendulum set-up. The comparisons in function optimization and system identification using ABC, LM and ABC-LM showed that ABC-LM optimized nonlinear functions and ABC-LM trained ANN has resulted smaller cost functions and mean-squared-error (MSE) values, respectively. © 2013 IEEE.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectABC algorithmen_US
dc.subjectLM methoden_US
dc.subjectnonlinear function optimizationen_US
dc.subjectnonlinear system identificationen_US
dc.subjectAlgorithmsen_US
dc.subjectClassification (of information)en_US
dc.subjectFunctionsen_US
dc.subjectNeural networksen_US
dc.subjectNonlinear systemsen_US
dc.subjectAbc algorithmsen_US
dc.subjectArtificial bee colony algorithms (ABC)en_US
dc.subjectFunction Optimizationen_US
dc.subjectLevenberg-Marquardten_US
dc.subjectNon-linear optimizationen_US
dc.subjectNonlinear function optimizationen_US
dc.subjectOptimization methoden_US
dc.subjectOptimizationen_US
dc.titleCascaded ABC-LM algorithm based optimization and nonlinear system identificationen_US
dc.typeConference Objecten_US
dc.identifier.startpage243
dc.identifier.startpage243en_US
dc.identifier.endpage246en_US
dc.authorid000-0003-3092-0927-
dc.authorid0000-0002-9516-6892-
dc.authorid0000-0002-9581-2794-
dc.identifier.doi10.1109/ICECCO.2013.6718274-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-84894170993en_US
dc.identifier.wosWOS:000336616500062en_US
dc.ownerPamukkale University-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeConference Object-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.dept20.04. Mechatronics Engineering-
crisitem.author.dept20.04. Mechatronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.