Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8400
Title: An automatic level set based liver segmentation from MRI data sets
Authors: Göçeri, Evgin
Unlu, M.Z.
Guzelis, C.
Dicle, O.
Keywords: Geometric active contours
Level set method
Liver segmentation
MRI
Automatic segmentations
Central nervous systems
Computer assisted diagnosis
Level Set method
Magnetic resonance images
Segmentation algorithms
Ionizing radiation
Iterative methods
Magnetic resonance imaging
Numerical methods
Partial differential equations
Tissue
Image segmentation
Abstract: A fast and accurate liver segmentation method is a challenging work in medical image analysis area. Liver segmentation is an important process for computer-assisted diagnosis, pre-evaluation of liver transplantation and therapy planning of liver tumors. There are several advantages of magnetic resonance imaging such as free form ionizing radiation and good contrast visualization of soft tissue. Also, innovations in recent technology and image acquisition techniques have made magnetic resonance imaging a major tool in modern medicine. However, the use of magnetic resonance images for liver segmentation has been slow when we compare applications with the central nervous systems and musculoskeletal. The reasons are irregular shape, size and position of the liver, contrast agent effects and similarities of the gray values of neighbor organs. Therefore, in this study, we present a fully automatic liver segmentation method by using an approximation of the level set based contour evolution from T2 weighted magnetic resonance data sets. The method avoids solving partial differential equations and applies only integer operations with a two-cycle segmentation algorithm. The efficiency of the proposed approach is achieved by applying the algorithm to all slices with a constant number of iteration and performing the contour evolution without any user defined initial contour. The obtained results are evaluated with four different similarity measures and they show that the automatic segmentation approach gives successful results. © 2012 IEEE.
URI: https://hdl.handle.net/11499/8400
https://doi.org/10.1109/IPTA.2012.6469551
ISBN: 9781467325837
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
An Automatic Level Set Based Liver Segmentation from MRI Data Sets.pdf630.92 kBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

23
checked on Dec 14, 2024

WEB OF SCIENCETM
Citations

22
checked on Dec 20, 2024

Page view(s)

38
checked on Aug 24, 2024

Download(s)

20
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.