Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8787
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYücel, Uğur-
dc.contributor.authorBoubaker, K.-
dc.date.accessioned2019-08-16T12:47:06Z
dc.date.available2019-08-16T12:47:06Z
dc.date.issued2012-
dc.identifier.issn0307-904X-
dc.identifier.urihttps://hdl.handle.net/11499/8787-
dc.identifier.urihttps://doi.org/10.1016/j.apm.2011.05.030-
dc.description.abstractThe differential quadrature method (DQM) and the Boubaker Polynomials Expansion Scheme (BPES) are applied in order to compute the eigenvalues of some regular fourth-order Sturm-Liouville problems. Generally, these problems include fourth-order ordinary differential equations together with four boundary conditions which are specified at two boundary points. These problems concern mainly applied-physics models like the steady-state Euler-Bernoulli beam equation and mechanicals non-linear systems identification. The approach of directly substituting the boundary conditions into the discrete governing equations is used in order to implement these boundary conditions within DQM calculations. It is demonstrated through numerical examples that accurate results for the first kth eigenvalues of the problem, where k= 1,. 2,. 3,. .... , can be obtained by using minimally 2(k+. 4) mesh points in the computational domain. The results of this work are then compared with some relevant studies. © 2011 Elsevier Inc.en_US
dc.language.isoenen_US
dc.relation.ispartofApplied Mathematical Modellingen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBoubaker Polynomials Expansion Scheme (BPES)en_US
dc.subjectBoundary-value problemsen_US
dc.subjectDifferential quadrature method (DQM)en_US
dc.subjectEigenvalue problemsen_US
dc.subjectSturm-Liouville problemsen_US
dc.subjectBoundary pointsen_US
dc.subjectComputational domainsen_US
dc.subjectDifferential quadrature methodsen_US
dc.subjectEfficient computationen_US
dc.subjectEigenvalue problemen_US
dc.subjectEigenvaluesen_US
dc.subjectEuler-Bernoulli beam equationen_US
dc.subjectFourth-orderen_US
dc.subjectGoverning equationsen_US
dc.subjectMesh pointsen_US
dc.subjectNumerical exampleen_US
dc.subjectPolynomials expansionen_US
dc.subjectSturm-Liouville problemen_US
dc.subjectBoundary conditionsen_US
dc.subjectDifferentiation (calculus)en_US
dc.subjectEigenvalues and eigenfunctionsen_US
dc.subjectExpansionen_US
dc.subjectLinear systemsen_US
dc.subjectPolynomialsen_US
dc.subjectOrdinary differential equationsen_US
dc.titleDifferential quadrature method (DQM) and Boubaker Polynomials Expansion Scheme (BPES) for efficient computation of the eigenvalues of fourth-order Sturm-Liouville problemsen_US
dc.typeArticleen_US
dc.identifier.volume36en_US
dc.identifier.issue1en_US
dc.identifier.startpage158
dc.identifier.startpage158en_US
dc.identifier.endpage167en_US
dc.authorid0000-0003-4562-7651-
dc.identifier.doi10.1016/j.apm.2011.05.030-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-80051825972en_US
dc.identifier.wosWOS:000296113400012en_US
dc.identifier.scopusqualityQ1-
dc.ownerPamukkale University-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept17.04. Mathematics-
Appears in Collections:Fen-Edebiyat Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
10.1016 j.apm.2011.05.030.pdf222.91 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

30
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

27
checked on Nov 21, 2024

Page view(s)

44
checked on Aug 24, 2024

Download(s)

110
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.