Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8888
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDilmen, Erdem-
dc.contributor.authorBeyhan, Selami-
dc.date.accessioned2019-08-16T12:57:05Z
dc.date.available2019-08-16T12:57:05Z
dc.date.issued2017-
dc.identifier.isbn9781538618806-
dc.identifier.urihttps://hdl.handle.net/11499/8888-
dc.identifier.urihttps://doi.org/10.1109/IDAP.2017.8090243-
dc.description.abstractThis paper introduces a novel deep recurrent support vector regressor (DRSVR) model for online regression. DRSVR model is constructed by a state equation followed by an output construction. The inner layer is actually a least squares support vector regressor (LS-SVR) of the states with an adaptive kernel function. In addition, an infinite impulse response (UR) filter is adopted in the model. LS-SVR and UR filter together constitute an intermediate layer which performs the recursive state update. Each internal state has a recurrency which is a function of the observed input-output data and the previous states. Hence, internal states track the temporal dependencies in the feature space. The outer layer is a linear combination of the states. The model parameters, including the Gaussian kernel width parameter, are updated simultaneously, that provides the model to capture the time-varying dynamics of the data quickly. Parameters are adaptively tuned using error-square minimization via conventional Gauss-Newton optimization while keeping the poles of the IIR filter constrained to maintain stability. The proposed DRSVR model is applied for real-time nonlinear system identification. The identification results indicate the accurate regression performance of the proposed model. © 2017 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectConstrained optimizationen_US
dc.subjectData handlingen_US
dc.subjectIIR filtersen_US
dc.subjectImpulse responseen_US
dc.subjectRegression analysisen_US
dc.subjectAdaptive kernel functionsen_US
dc.subjectGauss-Newton optimizationen_US
dc.subjectInfinite impulse responseen_US
dc.subjectIntermediate layersen_US
dc.subjectLinear combinationsen_US
dc.subjectRecurrent support vector machinesen_US
dc.subjectSupport vector regressoren_US
dc.subjectTime-varying dynamicsen_US
dc.subjectEquations of stateen_US
dc.titleDeep recurrent support vector machine for online regressionen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/IDAP.2017.8090243-
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85039898416en_US
dc.identifier.wosWOS:000426868700083en_US
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept20.04. Mechatronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Oct 13, 2024

Page view(s)

38
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.