Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/8973
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDilmen, Erdem-
dc.contributor.authorBeyhan, Selami-
dc.date.accessioned2019-08-16T12:57:29Z
dc.date.available2019-08-16T12:57:29Z
dc.date.issued2017-
dc.identifier.issn2405-8963-
dc.identifier.urihttps://hdl.handle.net/11499/8973-
dc.identifier.urihttps://doi.org/10.1016/j.ifacol.2017.08.1521-
dc.description.abstractIn this paper, a novel online least squares support vector machine approach is proposed for classification and regression problems. Gaussian kernel function is used due to its strong generalization capability. The contribution of the paper is twofold. As the first novelty, all parameters of the SVM including the kernel width parameter ? are trained simultaneously when a new sample arrives. Unscented Kalman filter is adopted to train the parameters since it avoids the sub-optimal solutions caused by linearization in contrast to extended Kalman filter. The second novelty is the variable size moving window by an intelligent update strategy for the support vector set. This provides that SVM model captures the dynamics of data quickly while not letting it become clumsy due to the big amount of useless or out-of-date support vector data. Simultaneous training of the kernel parameter by unscented Kalman filter and intelligent update of support vector set provide significant performance using small amount of support vector data for both classification and system identification application results. © 2017en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.ispartofIFAC-PapersOnLineen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAdaptive kernel functionen_US
dc.subjectOnline classificationen_US
dc.subjectReal-time system identificationen_US
dc.subjectregressionen_US
dc.subjectSupport vector machineen_US
dc.subjectUKFen_US
dc.titleA novel online LS-SVM approach for regression and classificationen_US
dc.typeArticleen_US
dc.identifier.volume50en_US
dc.identifier.issue1en_US
dc.identifier.startpage8642
dc.identifier.startpage8642en_US
dc.identifier.endpage8647en_US
dc.identifier.doi10.1016/j.ifacol.2017.08.1521-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85031812938en_US
dc.identifier.wosWOS:000423964900429en_US
dc.identifier.scopusqualityQ3-
dc.ownerPamukkale University-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept20.04. Mechatronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File SizeFormat 
1-s2.0-S2405896317321055-main.pdf523.47 kBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

12
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

9
checked on Nov 21, 2024

Page view(s)

76
checked on Aug 24, 2024

Download(s)

36
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.