Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9245
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDilmen, Erdem-
dc.contributor.authorYilmaz, S.-
dc.contributor.authorBeyhan, S.-
dc.date.accessioned2019-08-16T12:59:08Z-
dc.date.available2019-08-16T12:59:08Z-
dc.date.issued2017-
dc.identifier.isbn9780128113196-
dc.identifier.isbn9780128113189-
dc.identifier.urihttps://hdl.handle.net/11499/9245-
dc.identifier.urihttps://doi.org/10.1016/B978-0-12-811318-9.00005-3-
dc.description.abstractArtificial Bee Colony (ABC) and Levenberg-Marquardt (LM) optimization algorithms are applied efficiently for nonlinear constrained and unconstrained optimization problems in literature. In this paper, an intelligent hybridization method of the ABC and LM algorithms is proposed such that their global and local exploitation superiorities are unified to reduce the computational time and escape from local minima of optimization problem. In order to prove the capability of proposed hybrid algorithm, twofold experiment is conducted. In the first phase, the hybrid algorithm is applied to optimize several nonlinear unimodal, multimodal and shifted benchmark functions. Secondly, it is applied to the constrained engineering problems and compared to literature works in several performance criteria. © 2017 Elsevier Inc. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Inc.en_US
dc.relation.ispartofHandbook of Neural Computationen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial bee colonyen_US
dc.subjectConstrained and unconstrained nonlinear optimizationen_US
dc.subjectHybrid optimizationen_US
dc.subjectLevenberg-Marquardt methoden_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectNonlinear programmingen_US
dc.subjectArtificial bee coloniesen_US
dc.subjectArtificial bee colonies (ABC)en_US
dc.subjectEngineering applicationsen_US
dc.subjectLevenberg Marquardt optimizationsen_US
dc.subjectLevenberg- Marquardt methodsen_US
dc.subjectNon-linear optimizationen_US
dc.subjectUnconstrained optimization problemsen_US
dc.subjectConstrained optimizationen_US
dc.titleAn Intelligent Hybridization of ABC and LM Algorithms With Constraint Engineering Applicationsen_US
dc.typeBook Parten_US
dc.identifier.startpage87-
dc.identifier.startpage87en_US
dc.identifier.endpage107en_US
dc.identifier.doi10.1016/B978-0-12-811318-9.00005-3-
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.identifier.scopus2-s2.0-85032352825en_US
dc.identifier.wosWOS:000446768700005en_US
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeBook Part-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept20.04. Mechatronics Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

3
checked on Nov 21, 2024

Page view(s)

28
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.