Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/9268
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKöroglu, Selim-
dc.contributor.authorDemirçalı, Akif-
dc.contributor.authorKesler, Selami-
dc.contributor.authorSergeant, P.-
dc.contributor.authorÖztürk, Erkan-
dc.contributor.authorTümbek, Mustafa-
dc.date.accessioned2019-08-16T12:59:19Z-
dc.date.available2019-08-16T12:59:19Z-
dc.date.issued2017-
dc.identifier.issn1112-5209-
dc.identifier.urihttps://hdl.handle.net/11499/9268-
dc.description.abstractEnergy usage and environment pollution in the transportation are major problems of today's world. Although electric vehicles are promising solutions to these problems, their energy management methods are complicated and need to be improved for the extensive usage. In this work, the heuristic optimization methods; Differential Evolution Algorithm, Genetic Algorithm and Particle Swarm Optimization, are used to provide an optimal energy management system for a battery/ultracapacitor powered electric vehicle without prior knowledge of the drive cycle. The proposed scheme has been simulated in Matlab and applied on the ECE driving cycle. The differences between optimization methods are compared with reproducible and measurable error criteria. Results and the comparisons show the effectiveness and the practicality of the applied methods for the energy management problem of the multi-source electric vehicles. © JES 2017.en_US
dc.language.isoenen_US
dc.publisherEngineering and Scientific Research Groupsen_US
dc.relation.ispartofJournal of Electrical Systemsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBatteryen_US
dc.subjectDifferential evolution algorithmen_US
dc.subjectElectric vehicleen_US
dc.subjectEnergy managementen_US
dc.subjectGenetic algorithmen_US
dc.subjectOptimizationen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectUltracapacitoren_US
dc.subjectElectric batteriesen_US
dc.subjectElectric vehiclesen_US
dc.subjectEnergy management systemsen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectGenetic algorithmsen_US
dc.subjectHeuristic methodsen_US
dc.subjectLand vehicle propulsionen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectSecondary batteriesen_US
dc.subjectSupercapacitoren_US
dc.subjectVehiclesen_US
dc.subjectDifferential evolution algorithmsen_US
dc.subjectEnvironment pollutionen_US
dc.subjectGenetic algorithm and particle swarm optimizationsen_US
dc.subjectHeuristic optimization methoden_US
dc.subjectManagement problemsen_US
dc.subjectManagement systemsen_US
dc.subjectOptimization methoden_US
dc.titleEnergy management system optimization for battery- ultracapacitor powered electric vehicleen_US
dc.typeArticleen_US
dc.identifier.volume13en_US
dc.identifier.issue1en_US
dc.identifier.startpage16-
dc.identifier.startpage16en_US
dc.identifier.endpage26en_US
dc.authorid0000-0001-8178-3227-
dc.authorid0000-0001-9030-7775-
dc.authorid000-0002-7027-1426-
dc.authorid0000-0002-1412-4771-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85014506949en_US
dc.identifier.wosWOS:000410491700002en_US
dc.identifier.scopusqualityQ2-
dc.ownerPamukkale University-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
crisitem.author.dept20.01. Automotive Engineering-
crisitem.author.dept10.04. Electrical-Electronics Engineering-
Appears in Collections:Mühendislik Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

6
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

5
checked on Nov 21, 2024

Page view(s)

88
checked on Aug 24, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.