Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/26755
Title: Natural diterpenoid alysine A isolated from Teucrium alyssifolium exerts antidiabetic effect via enhanced glucose uptake and suppressed glucose absorption
Authors: Şen, Alaattin
Ayar, Buket
Yılmaz, Anıl
Özgün Acar, Özden
Çelik Turgut, Gurbet
Topçu, Gülaçtı
Keywords: Alysine A, alysine B, antidiabetic, Teucrium alyssifolium, glucose homeostasis
Publisher: SCIENTIFIC TECHNICAL RESEARCH COUNCIL TURKEY-TUBITAK
Abstract: Teucrium species have been used in folk medicine as antidiabetic, antiinflammatory, antiulcer, and antibacterial agents. We have explored in vitro antidiabetic impacts of 2 natural diterpenoids, alysine A and alysine B, isolated from Teucrium alyssifolium. The lactate dehydrogenase (LDH) cytotoxicity assay, glucose uptake test, glucose utilization (glycogen content) test, glucose transport test, glucose absorption (?-glucosidase activity) test, insulin secretion test, RNA isolation and cDNA synthesis assay, qPCR quantification assays, and statistical analyses were carried out in the present study. Alysine A exerted the following effects at non-cytotoxic doses: • Enhanced the glucose uptake, as much as the insulin in the C2C12, HepG2, and 3T3-L1 cells • Increased the glycogen content in the C2C12 and HepG2 liver cells, significantly higher than the insulin and metformin • Suppressed the alpha-glucosidase and the GLUT2 expression levels in the Caco-2 cells • Suppressed the SGLT1 and GLUT1-5 expression levels in the Caco-2 cells • Induced the insulin receptor substrate (IRS)1 and GLUT2 expression levels of the BTC6 pancreatic cells • Induced the insulin receptor (INSR), IRS2, phosphoinositide 3-kinase (PI3K), GLUT4, and protein kinase (PK) expression levels of the 3T3-L1 and C2C12 cells • Increased glucose transport through the Caco-2 cell layer • Did not influence insulin secretion in the pancreatic BTC6 cells Consequently, these data strongly emphasized the antidiabetic action of alysine A on the particularly critical model mechanisms that assume a part in glucose homeostasis, such as glucose uptake, utilization, and storage. Moreover, the expression level of the essential genes in glucose metabolism and insulin signaling was altered in a way that the results would be antihyperglycemic. A blend of in vitro and in situ tests affirmed the antihyperglycemic action of alysine A and its mechanism. Alysine A has exercised significant and positive results on the glucose homeostasis; thus, it is a natural and pleiotropic antidiabetic agent. Advanced in vivo studies are required to clarify the impact of this compound on glucose homeostasis completely
URI: https://hdl.handle.net/11499/26755
https://doi.org/10.3906/kim-1904-57
ISSN: 1300-0527
Appears in Collections:Denizli Sağlık Hizmetleri Meslek Yüksekokulu Koleksiyonu
Fen Fakültesi Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
Uygulamalı Bilimler Yüksekokulu Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
My_Kim-43-5-10-1904-57.pdfMakale Dosyası1.32 MBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

2
checked on Jun 1, 2024

WEB OF SCIENCETM
Citations

2
checked on Jun 7, 2024

Page view(s)

42
checked on May 27, 2024

Download(s)

8
checked on May 27, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.