Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/45680
Title: Hill operatörü ile ilgili ters spektral problemler
Other Titles: Inverse spectral problems associated with hill operator
Authors: Tiver, Mehmet
Keywords: Ters spektral teori
Ambarzumyan teorem
Sturm-Liouville operatörü
Hill operatörü
Dirichlet
Quasi- periyodik
Periyodik
Anti-Periyodik sınır koşulları
Inverse spectral theory
Ambarzumyan theorem
Sturm-Liouville operator
Hill operator
Dirichlet
Quasi-periodic
Periodic
Anti-Periodic boundary conditions
Publisher: Pamukkale Üniversitesi Fen Bilimleri Enstitüsü
Abstract: L2[0; 1] uzayında, keyi self adjoint sınır ko¸sulu ile üretilen L(q) Sturm-Liouville operatörü göz önüne alınmı¸stır. Burada q(x) 2 L1[0; 1] reel de?gerli bir fonksiyondur. Dirichlet, quasi-periyodik, periyodik ve anti-periyodik sınır ko¸sulları ile Sturm-Liouville operatörü için ters problem incelenmi¸stir.
In the space L2[0; 1], we consider L(q) Sturm-Liouville operator generated with arbitrary self-adjoint boundary conditions, where q(x) 2 L1[0; 1] is a real-valued function. The inverse problem for Dirichlet, quasi-periodic, periodic and anti-periodic boundary conditions with Sturm-Liouville operator were investigated
URI: https://hdl.handle.net/11499/45680
Appears in Collections:Tez Koleksiyonu (Fen Bilimleri Enstitüsü)

Files in This Item:
File Description SizeFormat 
PAU-edited.pdf277.92 kBAdobe PDFView/Open
Show full item record



CORE Recommender

Page view(s)

108
checked on Sep 8, 2025

Download(s)

164
checked on Sep 8, 2025

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.