Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/56865
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTassoker, M.-
dc.contributor.authorÖziç, M.Ü.-
dc.contributor.authorYuce, F.-
dc.date.accessioned2024-03-23T13:09:38Z-
dc.date.available2024-03-23T13:09:38Z-
dc.date.issued2024-
dc.identifier.issn2045-2322-
dc.identifier.urihttps://doi.org/10.1038/s41598-024-55109-2-
dc.identifier.urihttps://hdl.handle.net/11499/56865-
dc.description.abstractIdiopathic osteosclerosis (IO) are focal radiopacities of unknown etiology observed in the jaws. These radiopacities are incidentally detected on dental panoramic radiographs taken for other reasons. In this study, we investigated the performance of a deep learning model in detecting IO using a small dataset of dental panoramic radiographs with varying contrasts and features. Two radiologists collected 175 IO-diagnosed dental panoramic radiographs from the dental school database. The dataset size is limited due to the rarity of IO, with its incidence in the Turkish population reported as 2.7% in studies. To overcome this limitation, data augmentation was performed by horizontally flipping the images, resulting in an augmented dataset of 350 panoramic radiographs. The images were annotated by two radiologists and divided into approximately 70% for training (245 radiographs), 15% for validation (53 radiographs), and 15% for testing (52 radiographs). The study employing the YOLOv5 deep learning model evaluated the results using precision, recall, F1-score, mAP (mean Average Precision), and average inference time score metrics. The training and testing processes were conducted on the Google Colab Pro virtual machine. The test process's performance criteria were obtained with a precision value of 0.981, a recall value of 0.929, an F1-score value of 0.954, and an average inference time of 25.4 ms. Although radiographs diagnosed with IO have a small dataset and exhibit different contrasts and features, it has been observed that the deep learning model provides high detection speed, accuracy, and localization results. The automatic identification of IO lesions using artificial intelligence algorithms, with high success rates, can contribute to the clinical workflow of dentists by preventing unnecessary biopsy procedure. © The Author(s) 2024.en_US
dc.language.isoenen_US
dc.publisherNature Researchen_US
dc.relation.ispartofScientific Reportsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectDeep learningen_US
dc.subjectDense bone islanden_US
dc.subjectIdiopathic osteosclerosisen_US
dc.subjectPanoramic radiographyen_US
dc.subjectYOLOv5en_US
dc.subjectcontrast mediumen_US
dc.subjectartificial intelligenceen_US
dc.subjectdeep learningen_US
dc.subjectdiagnostic imagingen_US
dc.subjecthumanen_US
dc.subjectosteosclerosisen_US
dc.subjectpanoramic radiographyen_US
dc.subjectradiographyen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectContrast Mediaen_US
dc.subjectDeep Learningen_US
dc.subjectHumansen_US
dc.subjectOsteosclerosisen_US
dc.subjectRadiographyen_US
dc.subjectRadiography, Panoramicen_US
dc.titlePerformance evaluation of a deep learning model for automatic detection and localization of idiopathic osteosclerosis on dental panoramic radiographsen_US
dc.typeArticleen_US
dc.identifier.volume14en_US
dc.identifier.issue1en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.1038/s41598-024-55109-2-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.authorscopusid57194135354-
dc.authorscopusid56246508200-
dc.authorscopusid57867839600-
dc.identifier.pmid38396289en_US
dc.identifier.scopus2-s2.0-85185696707en_US
dc.identifier.wosWOS:001176953400016en_US
dc.institutionauthor-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.dept20.03. Biomedical Engineering-
Appears in Collections:PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Teknoloji Fakültesi Koleksiyonu
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 16, 2024

Page view(s)

46
checked on Aug 24, 2024

Download(s)

18
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.