Please use this identifier to cite or link to this item: https://hdl.handle.net/11499/56903
Full metadata record
DC FieldValueLanguage
dc.contributor.authorÖziç, Muhammet Üsame-
dc.contributor.authorYilmaz, Ayşe Sidenur-
dc.contributor.authorSandiraz, Halil İbrahim-
dc.contributor.authorEstanto, Baihaqi Hilmi-
dc.date.accessioned2024-03-23T13:10:05Z-
dc.date.available2024-03-23T13:10:05Z-
dc.date.issued2023-
dc.identifier.issn2147-3129-
dc.identifier.issn2147-3188-
dc.identifier.urihttps://doi.org/10.17798/bitlisfen.1364332-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/1215970-
dc.identifier.urihttps://hdl.handle.net/11499/56903-
dc.description.abstractBreast cancer is one of the most common types of cancer among women worldwide. It typically begins with abnormal cell growth in the breast glands or milk ducts and can spread to other tissues. Many breast cancer cases start with the presence of a mass and should be carefully examined. Masses can be monitored using X-ray-based digital mammography images, including right craniocaudal, left craniocaudal, right mediolateral oblique, and left mediolateral oblique views. In this study, automatic mass detection and localization were performed on mammography images taken from the full-field digital mammography VinDr-Mammo dataset using the YOLOv8 deep learning model. Three different scenarios were tested: raw data, data with preprocessing to crop breast regions, and data with only mass regions cropped to a 1.2x ratio. The data were divided into 80% for training and 10% each for validation and testing. The results were evaluated using performance metrics such as precision, recall, F1-score, mAP, and training graphs. At the end of the study, it is demonstrated that the YOLOv8 deep learning model provides successful results in mass detection and localization, indicating its potential use as a computer-based decision support system.en_US
dc.language.isoenen_US
dc.relation.ispartofBitlis Eren Üniversitesi Fen Bilimleri Dergisien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleA Comparative Study of Breast Mass Detection Using YOLOv8 Deep Learning Model in Various Data Scenarios on Multi-View Digital Mammogramsen_US
dc.typeArticleen_US
dc.identifier.volume12en_US
dc.identifier.issue4en_US
dc.identifier.startpage1212en_US
dc.identifier.endpage1225en_US
dc.departmentPamukkale Universityen_US
dc.identifier.doi10.17798/bitlisfen.1364332-
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.trdizinid1215970en_US
dc.institutionauthor-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.grantfulltextopen-
crisitem.author.dept20.03. Biomedical Engineering-
Appears in Collections:Teknoloji Fakültesi Koleksiyonu
TR Dizin İndeksli Yayınlar Koleksiyonu / TR Dizin Indexed Publications Collection
Files in This Item:
File SizeFormat 
10.17798-bitlisfen.1364332-3424912.pdf1.8 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

Page view(s)

256
checked on Aug 24, 2024

Download(s)

132
checked on Aug 24, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.